

Advanced Analytical Methods to Characterize Liposome Drug Products

Wenlei Jiang, Ph.D. Senior Science Advisor

Office of Research and Standards (ORS) Office of Generic Drugs (OGD) Center for Drug Evaluation and Research (CDER), FDA

Dec 3, 2018

Ispra, Italy (via webex)

Joint European Commission Joint Research Center (JRC)-National Institute of Standards and Technology (NIST) Workshop on Characterization Methods and Standards for Nanoparticles in Medical Products

Disclaimer

- The views expressed in this presentation are those of the speaker and not necessarily those of the Food and Drug Administration (FDA).
- Drug product names are mentioned in the presentation for clarification not endorsement.

Liposome and Liposome Drug Products

Liposome

 Microvesicle composed of a bilayer and/or a concentric series of multiple bilayers separated by aqueous compartments formed by amphipathic molecules such as phospholipids that enclose a central aqueous compartment

Liposome Drug Product

• A drug product in which the active pharmaceutical ingredient (API) is contained in liposomes

www.fda.gov

Guidance for Industry. Liposome drug products, chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. U.S. Food and Drug Administration. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf (2018)

FDA Approved Liposome New Drug Applications (NDAs)

Trade name	Active Ingredient	Indication and Usage	Route	Initial Approval Date	Market Status Available
DOXIL	Doxorubicin HCl	Ovarian cancer, AIDS-related Kaposi's sarcoma, multiple myeloma	Intravenous	11/17/1995	Yes
DAUNOXOME	Daunorubicin Citrate	Advanced HIV-related Kaposi's sarcoma (relapse)	Intravenous	4/8/1996	Yes
AMBISOME	Amphotericin B	Certain fungal infections	Intravenous	08/11/1997	Yes
DEPOCYT	Cytarabine	Lymphomatous meningitis	Intrathecal	04/01/1999	Discontinued
VISUDYNE	Verteporfin	Photosensitizer for treatment of certain patients	Intravenous	04/12/2000	Yes
DEPODUR	Morphine Sulfate	Opioid local analgesic	Epidural	05/18/2004	Discontinued
EXPAREL	Bupivacaine	Postsurgical analgesia	infiltration into the surgical site	10/28/2011	Yes
MARQIBO	Vincristine Sulfate	Acute lymphoblastic leukemia	Intravenous	08/09/2012	Yes
ONIVYDE	Irinotecan HCl	Metastatic pancreatic cancer	Intravenous	10/22/2015	Yes
VYXEOS	Daunorubicin and Cytarabine	Therapy-related acute myeloid leukemia (t- AML) or AML with myelodysplasia-related changes (AML-MRC)	Intravenous	08/03/2017	Yes
ARIKAYCE KIT	Amikacin sulfate	Mycobacterium avium complex (MAC) lung disease	Oral inhalation	09/28/2018	

https://www.accessdata.fda.gov/scripts/cder/daf/

Generic Drugs

- Generic drugs are "copies" of their respective reference listed drugs (RLDs)
- Generally, this means same active ingredient, dosage form, strength, routes of administration, quality, performance characteristics, safety, efficacy, and intended use.

https://accessiblemeds.org/sites/default/files/2018_aam_generic_drug_access_and_savings_report.pdf

New Drug Application (NDA) vs. Abbreviated New Drug Application (ANDA)

- 1. Chemistry
- 2. Manufacturing
- 3. Testing
- 4. Labeling
- 5. Inspection
- 6. Animal Studies
- 7. Clinical Studies
- 8. Bioavailability

ANDA

- 1. Chemistry
- 2. Manufacturing
- 3. Testing
- 4. Labeling
- 5. Inspection
- 6. Bioequivalence

FDA

Generic Liposome Drug Products

Doxorubicin HCl	ANDA	Manufacturer	Approval Date
(liposomal)	203263	Sun Pharma Global	Feb 4, 2013
	208657	Dr Reddy's Labs LTD	May 15, 2017

Guidance on Liposome Drug Products

8

Liposome Drug Products

Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation

Guidance for Industry

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> April 2018 Pharmaceutical Quality/CMC

Physico-chemical Characterization

Liposome components

- Lipids
- Unencapsulated drug vs liposome associated drug

Liposome higher order structure

- Particle size
- Morphology
- Lamellarity
- Surface characteristics of the liposomes
- Liposome phase transition temperature

Liposome performance

- In vitro release
- Liposome integrity changes

Guidance for Industry. Liposome drug products, chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. U.S. Food and Drug Administration. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070570.pdf (2018)

Product-specific Guidance for Liposome Drug Products

Trade name	Initial Approval Date	Product-Specific Guidance Available					
DOXIL	11/17/1995	Yes					
DAUNOXOME	4/8/1996	Yes					
AMBISOME	08/11/1997	Yes					
DEPOCYT*	04/01/1999	No					
VISUDYNE	04/12/2000	Yes					
DEPODUR*	05/18/2004	No					
EXPAREL	10/28/2011	Yes					
MARQIBO	08/09/2012	No					
ONIVYDE	10/22/2015	No					
VYXEOS	08/03/2017	No					
ARIKAYCE KIT	09/28/2018	No					

https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm075207.htm * Product discontinued

General Paradigm for Therapeutic Equivalence Recommendation of Liposome Drug Products

Unencapsulated drug: drug not associated with liposomes which is either present in the formulation or released from the liposomes

Zheng N, Sun DD, Zou P, Jiang W. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials. AAPS J. 2017 May;19(3):619-631. Advanced Analytical Methods to Characterize Liposome Compositions

 Unencapsulated and liposome associated drug

• Liposome excipients and active pharmaceutical ingredient (API)

• Liposome excipient degradation products

Direct Quantification of Unencapsulated Drug in Liposome Drug Product

Model Drug: Doxorubicin HCl Liposomes

Proprietary Name: DOXIL

Generic Name:

Doxorubicin HCl liposome injection

Indication and Regimen:

Aids-related Kaposi's Sarcoma Ovarian cancer Multiple myeloma in combination with bortezomib

Liposome associated Dox

Mechanism of Action

- Passively targets tumor sites due to its small size and persistence in the circulation (Enhanced Permeation and Retention (EPR) effect)
- Free doxorubicin (Dox) HCl becomes available at the tumor cell and binds DNA and inhibits nucleic acid synthesis. The exact mechanism of release is not understood.

Unencapsulated Dox is known to induce cardiac toxicity

https://www.accessdata.fda.gov/drugsat fda_docs/label/2016/050718s051lbl.pdf

Unencapsulated DOX Determined via Solid Phase Extraction and CE-UV-Vis Method

Siyam M. Ansar, Wenlei Jiang, Andrew Fong, and Thilak Mudalige, Direct Quantification of Free Drug from Liposome-Associated 14 Drug by Capillary Electrophoresis with UV-Vis Detection. International Journal of Pharmaceutics, 549:109-114, 2018

Determination of Unencapsulatd Doxorubicin by (CE-UV-Vis)

Electropherogram of DOX

- 10-min run
- Good separation of unencapsulated and liposome associated Dox
- Sensitivity enhanced by 10-fold by increasing the detection path length

FDA

Quantification Results of Unencapsulated DOX in FDA Approved Liposomal DOX Formulations via CE-UV-Vis

17

Percentage of Unencapsulated Dox (N=3, mean ± SD)

Dilution	Dilution with	5% Dextrose	Dilution with serum					
factor	Doxil	Generic	Doxil	Generic				
1 -	0.51 ± 0.06	0.45 ± 0.05	0.51 ± 0.06	0.45 ± 0.05				
2	0.46 ± 0.04	0.42 ± 0.03	0.47 ± 0.08	0.38 ± 0.11				
4	0.48 ± 0.04	0.39 ± 0.06	0.50 ± 0.06	0.43 ± 0.07				
8	0.48 ± 0.05	0.38 ± 0.06	0.48 ± 0.06	0.38 ± 0.05				
16	0.49 ± 0.08	0.41 ± 0.05	0.48 ± 0.04	0.40 ± 0.05				

Generic: Doxorubincin HCl liposomes manufactured by Sun Pharma

Siyam M. Ansar, Wenlei Jiang, Andrew Fong, and Thilak Mudalige, Direct Quantification of Free Drug from Liposome-Associated Drug by Capillary Electrophoresis with UV-Vis Detection. International Journal of Pharmaceutics, 549:109-114, 2018 www.fda.gov

Method Improvements

Conventional SPE-CE-UV-Vis Method

- Two-step process
- Lengthy separation
- Potential inaccurate quantification due to disruption to liposomes

Newly Developed CE-UV-Vis Method

- Direct quantification of unencapsulated drug in liposome formulation
- Fast separation (10 min)
- Minimizing the drug leakage
- Enhanced detection sensitivity

Quantification of Lipid Excipients and Active Pharmaceutical Ingredients (API) in Liposomes

Model Drug: Amphotericin B Liposomes FDA

https://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2016/CS/c5cs00674k/c5cs00674k-f3.gif

Proprietary name: AMBISOME

Generic name:

Amphotericin B Liposomal Injection, 50 mg/vial

Indications:

Fungal infection, cryptococcal meningitis, visceral leishmaniasis, and others

Mechanism of Action

- AMBISOME has been shown to penetrate the cell wall of both extracellular and intracellular forms of susceptible fungi
- Amphotericin B binds to the sterol component, ergosterol, of the cell membrane of susceptible fungi. It forms transmembrane channels leading to alterations in cell permeability through which monovalent ions (Na^{+,} K⁺, H⁺, and Cl⁻ leak out of the cell, resulting in cell death.
- While amphotericin B has a higher affinity for the ergosterol component of the fungal cell membrane, it can also bind to the cholesterol component of the mammalian cell, leading to cytotoxicity.

https://www.accessdata.fda.gov/drugsatfda_docs/label /2012/050740s021lbl.pdf

Quantification of Lipid Contents in Bulk Liposomes

HSPC: Hydrogenated soy phosphatidylcholine DSPG: Distearoylphosphatidylglycerol N=3, mean ± SD

Desiree Van Haute, Wenlei Jiang, Thilak Mudalige. Evaluation of size-based distribution of drug and excipient in Amphotericin B liposomal formulation. FDA Study Report

FDA

Quantification of Lipid and API via AF4-LC-UV/CAD

AFFFF (AF4): asymmetric flow - field flow fractionation NTA: nanoparticle tracking analysis CAD: charged aerosol detection

Size Separation and Quantification

(A)Fractogram of 40 nm, 100 nm, and 200 nm Polystyrene nanoparticle standards mixture and (B) fractogram of Amphotericin B liposomal formulation

(A)Chromatograms of individual standard solutions collected with CAD and (B) Chromatograms of Amphotericin B solutions collected with UV-Vis detector

FDA

24

130

Quantification of Lipids and API in Liposomes with Different Sizes (nm)

Ratio of Cholesterol to DSPG Α Size Vs Cholesterol:DSPG 0.8 0.6 $R^2 = 0.0012$ 0.4 0.2 0 70 80 90 100 110 120 130 Hydrodynamic Diameters (number average) 1 В Size Vs HSPC:DSPG $R^2 = 0.0076$ 0 70 80 90 100 110 120 130 Hydrodynamic Diameters (number average) 0.5 Ratio of Drug to Excipients Size Vs Drug:Total Excipints С 0.45 0.4 0.35 0.3 0.25 0.2 0.15

 $R^2 = 0.8749$

110

120

100

Hydrodynamic Diameters (number average)

0.1

0.05

70

80

90

Fraction Time	Nanoparticle Tracking analysis	Dynamic light scattering (Dh(z))
11 - 12	75.9 ± 1.3	62.2 ± 0.99
12 – 13	80.7 ± 1.8	65.46 ± 0.50
13 – 14	87.2 ± 2.3	72.22 ± 0.76
14 – 15	86.1 ± 1.4	78.58 ± 1.08
15 – 16	91.1 ± 0.3	85.14 ± 1.09
16 – 17	95.6 ± 2.0	91.2 ± 1.44
17 – 18	97.6 ± 0.6	96.9 ± 1.88
18 – 19	106.6 ± 0.4	101.46 ± 1.35
19 – 20	108.2 ± 0.7	108.98 ± 7.07
20 - 21	115.1 ± 1.7	113.34 ± 2.14
21 – 22	123.6 ± 1.3	119.18 ± 2.09

Desiree Van Haute, Wenlei Jiang, Thilak Mudalige. Evaluation of size-based distribution of drug and excipient in Amphotericin B liposomal formulation. FDA Study Report

Method Improvements

Conventional Method

- The distribution of active pharmaceutical ingredient (API) and excipients in liposomes with different sizes was removed due to the breakdown of bulk liposomes
- The API and excipients are often quantified by two separate analytical methods.

Newly Developed AF4-LC-UV/CAD Method

 Simultaneously obtain the information of the API and excipient distribution in liposomes of different sizes.

Investigation of Cholesterol Oxidation Products in Raw Materials and Liposome Drug Products

Cholesterol and Its Oxidation Products(COPs)

- Cholesterol is a critical excipient in liposome formulations
- Cholesterol oxidation products (COPs) which are oxygenated derivatives of cholesterol may be formed during liposome manufacturing process and liposome storage
- These COPs may affect liposome bilayer integrity

Representative Structures of COPs

UPLC-QTOF of COPs

RP-HPLC Chromatogram of Standard compounds mixture on C18 column

NP-HPLC Chromatogram of 7α , 7β mixture on cyano column.

 7α (4), 7β (5) are share EIC m/z 385.3471

UPLC: Ultra Performance Liquid Chromatography

QTOF: Quadrupole Time of Flight

Desmosterol Impurities in Raw Cholesterol Materials

Vendor	Biological Source	Manufacturing	Storage	Stabilizer	Detected	VS CHOI	RSD
					1	CHOL	(11-3)
					ng/mL	%	%
Vendor1	Ovine wool	NA	-20°C	NA	321.49	1.47	0.05
Vendor2	Wool Grease	GMP	RT	a- Tocopherol	499.16	2.54	0.03
Vendor3	Synthetic (Plant Derived)	GMP	-20°C	NA	0.00	0.00	0.00
Vendor4	NA	NA	4°C	NA	108.35	0.49	0.10
Vendor5*	NA	NA	-20°C	NA	749.40	3.64	0.01
Vendor6	Sheep wool grease	GMP	RT	a- Tocopherol	551.19	2.66	0.01

- No COPs detected in cholesterol USP raw materials.
- UPS Acceptance Criteria for desmosterol in bulk cholesterol : NMT 3%
 * Non USP-NF excipent

RT: room temperature NA: Not available

Changguang Wang, Dumindika A. Siriwardane, Wenlei Jiang, Thilak Mudalige, Quantitative analysis of cholesterol oxidation products and desmosterol in parenteral liposomal drug products, FDA study report 3

COPs in Liposomal Drug Products

		7α		7β		7β 7-Keto		0	Desmo		5,6α		5,6β			Triol					
DP1	412	±	49	93	±	14	116	±	14	121	±	29	0	±	0	0	±	0	36	±	5
DP2	336	±	100	372	±	43	249	±	14	2062	±	186	0	±	0	271	±	20	77	±	4

All commercial drugs were tested within shelf-life. DP1: Lot: 008986 Exp: 10/2020 DP2: Lot: HKZSV00 Exp: 06/2019

Changguang Wang, Dumindika A. Siriwardane, Wenlei Jiang, Thilak Mudalige, Quantitative analysis of cholesterol oxidation products and desmosterol in parenteral liposomal drug products, FDA study report

FDA

Conclusions

- Complex liposome formulations call for advanced analytical methods for detailed characterization
- A CE-UV-Vis method can provide a fast and direct quantification of unencapsulated doxorubicin in doxorubicin HCI liposomes while minimizing drug leakage
- AF4 in combination with LC-UV-Vis-CAD can simultaneously obtain the information of the API and excipient distribution in liposomes of different sizes.
- UPLC-QTOF method was developed for quantitation of trace amount of COPs in liposome drug products.

Acknowledgements

Office of Regulatory Affairs

Thilak Mudalige

Siyam Ansar

Desiree Van Haute

Changguang Wang

Dumindika Siriwardane

ORS/OGD/CDER

Lei Zhang Robert Lionberger

Thank you!

Any question? Please contact Wenlei Jiang wenlei.jiang@fda.hhs.gov