

YYXYYXYYYY

YYXYY LYYLY YYXYY **YXXX** YYXYY Y X X YYYXYY Y X X YYYXYY LYYLY YYXYY **LYYLY** YYXYY **XYYX** YYXYY

Sandoz Development Center Clinical development

PBPK Modeling to Support Risk Assessment for Oral Drug Products, Including Waiver of Fed BE Studies

Rebeka Jereb, PhD

Best Practices for Utilizing Modeling Approaches to Support Generic Product Development (Virtual Public Workshop) UNOVARTIS | Reimagining Medicine October 27th and 28th, 2022

Disclaimer

The opinions expressed herein are solely those of the presenter and do not represent statements or opinions of Lek Pharmaceuticals d.d., Sandoz Pharmaceuticals d.d., or Novartis Pharma Services Inc.

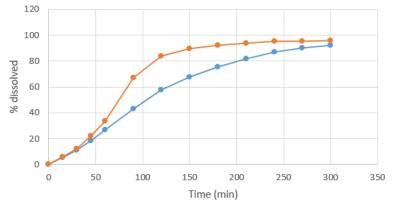
Agenda

- PBPK Modeling to Support Risk Assessment for Oral Drug Products
- Case study 1
- PBPK Modeling of Food Effect
- Waiver of Fed BE Study
- Case study 2

PBPK Modeling to Support Risk Assessement for Oral Drug Products

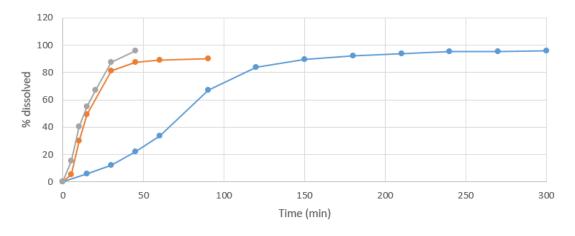
HA guidance

- US FDA: Physiologically Based Pharmacokinetic Analyses Format and Content Guidance for Industry (Sep 2018, final)
- US FDA: The Use of Physiologically Based Pharmacokinetic Analyses Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls (Sep 2020, draft)
- EMA: Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation (Dec 2018)
- Japan MHLW: Guidelines for Analysis Reports Involving Physiologically based Pharmacokinetic Models (Dec 2020)


PBPK Modeling to Support Risk Assessement for Oral Drug Products

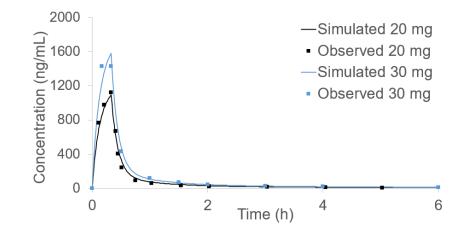
- **Physiologically based biopharmaceutics modeling (PBBM)** can be a helpful tool to assess potential BE risks and predict the outcome of BE studies
- PBBM in generic drug development has been utilized for:
 - API/formulation property selection
 - Assessment of effect of dissolution changes
 - Setting of clinically relevant specifications
 - In vitro in vivo correlations
 - Food effect prediction
 - Assessment of DDI' effect of acid reducing agents

- The dissolution profiles of T and R products were not similar in dissolution medium SGF without enzyme, pH 1.2 (f2=41), but despite this, both products were bioequivalent. We evaluated the effect of *in vitro* dissolution at pH 1.2 on *in vivo* tablet performance (c_p profiles and PK parameters)
- PBPK model in GastroPlus™ v. 9.6
- Literature data, experimental data, and in house BE study
- BCS III class drug (high solubility, low permeability)

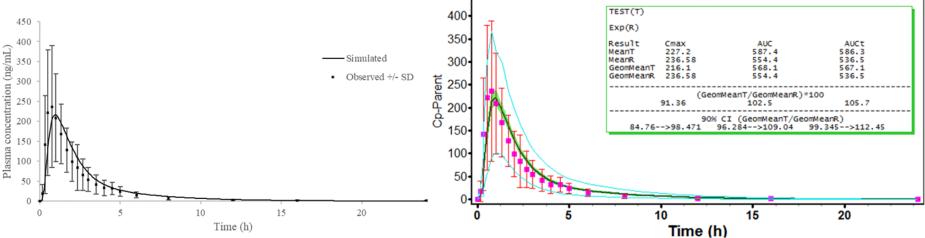

---- Test ---- Reference

- Model development and validation

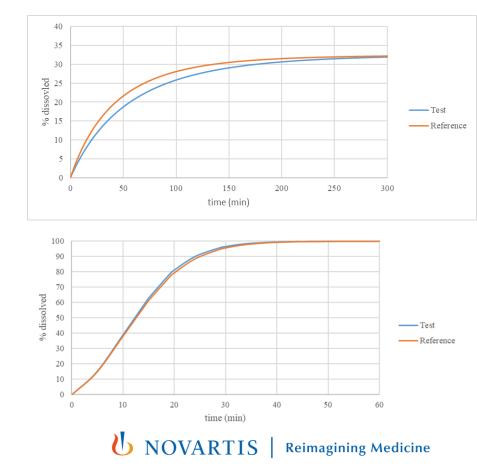
- PK parameters from IV profile (two doses)
- Optimizations volume of fluid in SI and C lowered according to literature
- Tablet in vitro dissolution for T and R tablets from BE study
- PSA API particle size, solubility, permeability, FPE, clearance, Vd, GIT transit time, volume of fluid in GIT, pH in GIT
- Population simulation and VBE
- Model application
 - Simulations using different stomach transit times



- Z-factor fitted to dissolution profiles at pH 1.2, 4.5, and 6.8
- Z-factor vs pH table used for simulations


—— pH 1.2 —— pH 4.5 —— pH 6.8

- IV model validation
 - Low %PE



	IV 20 mg			IV 30 mg			
	Observed	Simulated	% PE	Observed	Simulated	% PE	Average % PE
C _{max} (ng/mL)	1122.80	1094.70	2.50	1429.00	1582.00	-10.71	6.6
AUC _t (ng*h/mL)	502.72	528.18	-5.06	846.92	796.26	5.98	5.5
AUC _{inf} (ng*h/mL)	507.30	557.65	-9.93	860.03	807.06	6.16	8.0
T _{max} (h)	0.33	0.33		0.33	0.33		

- Tablet simulations
 - Low %PE

- Hypothetical *in vivo* dissolution (tablet stays in the stomach for infinite time)
- Difference between T and R
- Not in line with BE study results
- pH 1.2 not biorelevant
- Simulated in vivo dissolution
 - Tablet transits through GIT
 - Similar dissolution profiles
 - In line with BE study results

-

- EMA BE guidance: BE study should be conducted under fasting conditions (the most sensitive condition to detect a potential difference between formulations).
 - For products that are recommended to be taken with food, the BE study should be conducted only under fed conditions.
- US FDA BE guidance: fasting and fed studies might be needed for IR products.
 - Exceptions can be made when the product is recommended to be taken only on an empty stomach. If the product is to be taken only with food, **fasting and fed studies are recommended**, except when there is safety concern with fasting administration.
- Can PBPK modeling be used to waive fed BE study?

Effect of food

- Changes in GIT environment GIT times, fluid volume, pH, bile salt concentration, increased hepatic blood flow
- In addition possible binding to food components, chelation, increased viscosity, degradation, impact on influx and efflux transporters, enzymes
- Impact on drug dissolution and absorption positive, negative or no impact on C_{max}, AUC, and T_{max}
 - BCS 1 impact of gastric emptying time on C_{max}
 - BCS 2/4 increased solubility (positive food effect)

PBPK models more or less capable of predicting food effect

- Kesisoglou. Can PBPK Modeling Streamline Food Effect Assessments? 2020
 - Proposed workflow to streamline food effect assessment for different BCS classes
 - In vitro method relevant to specific food effect?
 - Model optimization precipitation time, permeability not unusual
- Cheng and Wong. Food Effects on Oral Drug Absorption: Application of PBPK Modeling as a Predictive Tool. 2020.
 - To predict fed state, account for physiological changes as well as drug properties (biorelevant solubility in fed state)
 - Inability of models to capture lymphatic uptake
 - Inability of models to capture negative food effect unknown mechanism
 - Viscosity, interactions, degradation, inhibition of transporters

- Emami Riedmaier et al. Use of PBPK Modeling for Predicting Drug-Food Interactions: An Industry Perpective. 2020.
 - Assessment of 30 compounds
 - High food effect prediction confidence effect of bile acids, transit times
 - Moderate food effect prediction confidence effect of blood flow, lymphatic uptake, precipitation
 - Low food effect prediction confidence microenvironment pH, viscosity, solubilization
 - Pepin et al. Understanding Mechanism of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. 2021.
 - Combination of bottom-up in vitro approach and top-down fitting to clinical data
 - Adjustment of volume of fluid (accounting for mucus), P_{eff} based on fasted data, biorelevant solubility

-

- Wagner et al. Use of PBPK Modeling for Predicting Drug-Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. 2021.
 - Fasted and fed state biorelevant solubility
 - Changes in pH in time (pH-dependent solubility)
 - Simulation of salt formation and common ion effects
 - Changes in permeability and hydrodynamics
 - Supersaturation and precipitation

- Emami Riedmaier. Predicting Food Effects: Are We There Yet? 2022.
 - Following validation with fasted data, models can be successfully applied to predict the fed state in lieu of a dedicated clinical food effect study, especially for BCS 1 and 3 compounds.
 - Gaps: transporters, enzymes, biopredictive in vitro method for negative food effect
 - A middle-out approach can be applied with high confidence, where the **fed model is verified with a clinical anchor study and subsequently extrapolated to additional food effect questions**, e.g., following formulation or dosage changes, thereby **avoiding additional clinical studies**.

\rightarrow option for generics?

-

Generics

- In general, a lot of clinical data to develop and validate PBPK model
- Middle-out approach as food effect study already performed by originator
- Most important:

How to incorporate **difference between T and R** in the model?

Waiver of fed BE study

Jereb et al. Prediction of fasted and fed bioequivalence for immediate release drug products using PBBM. 2020.

- 6 case studies (four BCS 2, one BCS 1, one BCS 3)

BE in fed state predicted based on model developed on data from fasting BE study and known food effect

Difference between T and R

Dissolution method (500 mL FaSSIF, App2, 75 rpm; 500 mL SGF, App 2, 50 rpm; 900 mL 0.01M HCl, App 2, 75 rpm)

- API particle size
- Solubility

Waiver of fed BE study

Disposition parameters – determined from IV, oral suspension

Optimization – reduced volume of fluid in GIT, increased gastric pH (1.2->2.0), change in precipitation time, stomach transit time, ASF (BCS 3)

P_{eff} from Caco-2 cells, MDCK

Virtual trials

- No. of subjects as in *in vivo* study
- No. of studies simulated 10 per condition
- Inter- and intra-subject variability in physiological and/or PK parameters

Waiver of fed BE study

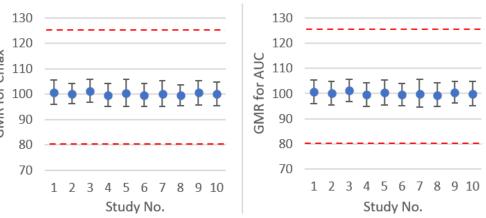
Model validation

- Scientific justifications for parameter values selection/optimization
 - PSA
- Include all available data
 - Larger %PE

Identified prerequisites

- BCS 1 or 2 with known food effect
- Linear PK
- Moderate to high BA
- Reliable PK parameters (IV, single oral dose, popPK)
- Available BE study data in the fasting conditions
- Reliable estimates of PK parameters variability

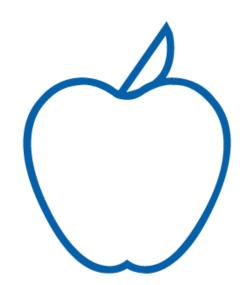
- BCS 2 class drug



- Data to develop and validate model
 - Literature data
 - Published clinical data (IV, capsule, tablet, different doses)
 - Pilot studies in fasting and fed conditions with 2 T batches and R
 - Pivotal study in fasting conditions with T and R
- Different **dissolution methods** for fasting and fed simulations
 - Fasting: SGF pH 1.2 acidic conditions in fasting stomach
 - Fed: 0.25% SLS in Na-phosphate buffer pH 4.5 to account for pH in fed stomach and effect of bile salts

VBE results

BE results - In line with fed pivotal study C_{max} T/R ratio 104.05% (97.88-110.61%) AUC T/R ratio 99.43% (97.88-101.00%)



Model deficiencies according to HA

- Not appropriately validated \rightarrow should use batches with different release rates/preferably non-BE batch
- No in-house experimental data on solubility (SGF, FaSSIF, FeSSIF)
- Not enough biorelevant dissolution methods

Conclusion

- PBPK Modeling to Support Risk Assessment & Waiver of Fed BE Studies
 - Useful for internal decision making in drug development
 - Regulatory applications difficult to have properly validated models

Acknowledgement

Many thanks to colleagues from Sandoz Development Center Slovenia and global for their contribution to modeling:

- Clinical Development
- IVIVC group

References

- 1. Kesisoglou F. Can PBPK Modeling Streamline Food Effect Assessments? J Clin Pharmacol. 2020 Oct;60 Suppl 1:S98-S104. doi: 10.1002/jcph.1678. PMID: 33205433.
- Cheng L, Wong H. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics. 2020 Jul 17;12(7):672. doi: 10.3390/pharmaceutics12070672. PMID: 32708881; PMCID: PMC7408216.
- Riedmaier AE, DeMent K, Huckle J, Bransford P, Stillhart C, Lloyd R, Alluri R, Basu S, Chen Y, Dhamankar V, Dodd S, Kulkarni P, Olivares-Morales A, Peng CC, Pepin X, Ren X, Tran T, Tistaert C, Heimbach T, Kesisoglou F, Wagner C, Parrott N. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. AAPS J. 2020 Sep 27;22(6):123. doi: 10.1208/s12248-020-00508-2. Erratum in: AAPS J. 2020 Nov 26;23(1):6. PMID: 32981010; PMCID: PMC7520419.
- Pepin XJH, Huckle JE, Alluri RV, Basu S, Dodd S, Parrott N, Emami Riedmaier A. Understanding Mechanisms of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. AAPS J. 2021 Jan 4;23(1):12. doi: 10.1208/s12248-020-00548-8. PMID: 33398593.
- Wagner C, Kesisoglou F, Pepin XJH, Parrott N, Emami Riedmaier A. Use of Physiologically Based Pharmacokinetic Modeling for Predicting Drug-Food Interactions: Recommendations for Improving Predictive Performance of Low Confidence Food Effect Models. AAPS J. 2021 Jun 17;23(4):85. doi: 10.1208/s12248-021-00601-0. PMID: 34142242.
- 6. Emami Riedmaier A. Predicting Food Effects: Are We There Yet? AAPS J. 2022 Jan 10;24(1):25. doi: 10.1208/s12248-021-00674-x. PMID: 35006448.
- 7. Jereb R, Kristl A, Mitra A. Prediction of fasted and fed bioequivalence for immediate release drug products using physiologically based biopharmaceutics modeling (PBBM). Eur J Pharm Sci. 2020 Dec 1;155:105554. doi: 10.1016/j.ejps.2020.105554. Epub 2020 Sep 16. PMID: 32946959.

YXXYXXXXX \mathbf{x} **YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYXYXXYYY **XXXXXXXXXX** \mathbf{x} **YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{Y} **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYYYYYYYY **XXXXXXXXXX** YYJYYJYYYY JYYJYYJYJY YYJYYJYYY **YXXYXXXXX** \mathbf{x} **YXXYXXXXX** YYXYXXYYY LYYLYYLYL YYYYYYYYY LYYLYYLYL YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX** XYXXYXXXX YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY

Thank you