

Predictive Performance of PBPK Dose Estimates for Pediatric Trials

Dr. Ibrahim Ince Dr. André Dallmann



#### **Bayer AG**

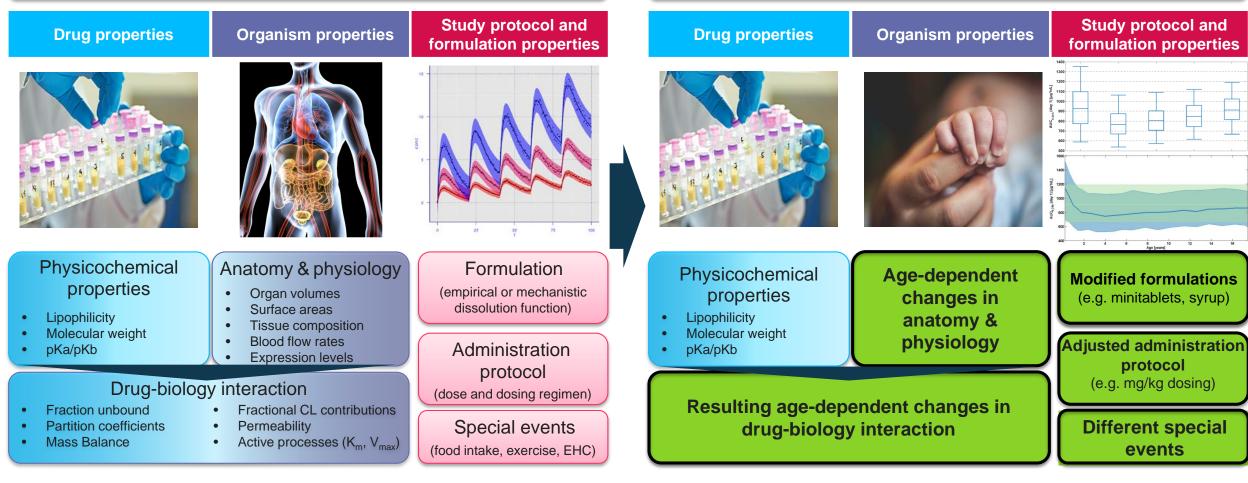
2020-10-22

Online FDA/MCERSI Pediatric Dose Selection Workshop

### Conflicts of interest / disclaimer

All authors are full time employees of Bayer AG

Parts of the herein presented work are supported by a grant from the FDA (award number: U01FD006549)


**Disclaimer:** The views expressed in this presentation do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

## PBPK modelling has been the scientific foundation for predictive exposure matching based on clinical studies for almost 2 decades

- Physiology based pharmacokinetic (PBPK) models have often supported the development and guidance of dosing strategies in children.
- These models incorporate age dependent changes of the relevant anthropometric and physiological parameters and apply ontogeny and variability of active processes involved in the elimination of pharmaceutical compounds.
- As most changes occur in the first 2 years of life, a good understanding of age-related changes in these processes is of upmost importance.
- Several studies have been performed for Bayer compounds, applying dosing schemes in children based on PBPK predictions.

### PBPK modeling in adults and translation to children in Open Systems Pharmacology (PK-Sim / MoBi)

### Building blocks of a PBPK model for adults



**Building blocks of a PBPK model for children** 

Bayer AG /// Predictive Performance of PBPK Dose estimates for Pediatric Trials /// October 2020 /// Ibrahim Ince, André Dallmann

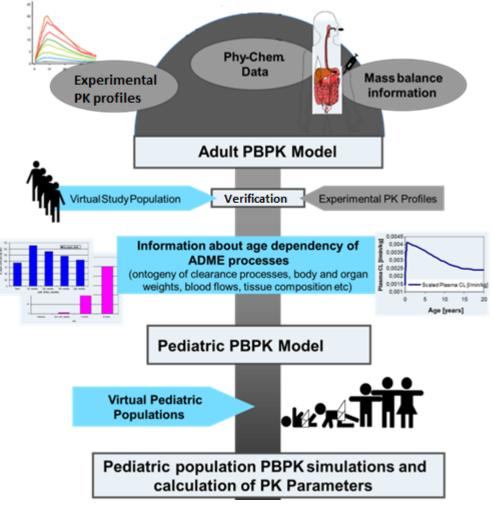
### Bridging from adults to children - Workflow

#### Step 1:

**Development and verification** of a PBPK model for adults

### Step 2:

**Translation** of the adult PBPK model to children using prior physiological information about growth and maturation of relevant processes


#### Step 3:

**Prediction** of pharmacokinetics in children by means of simulations of virtual pediatric trials

#### Step 4:

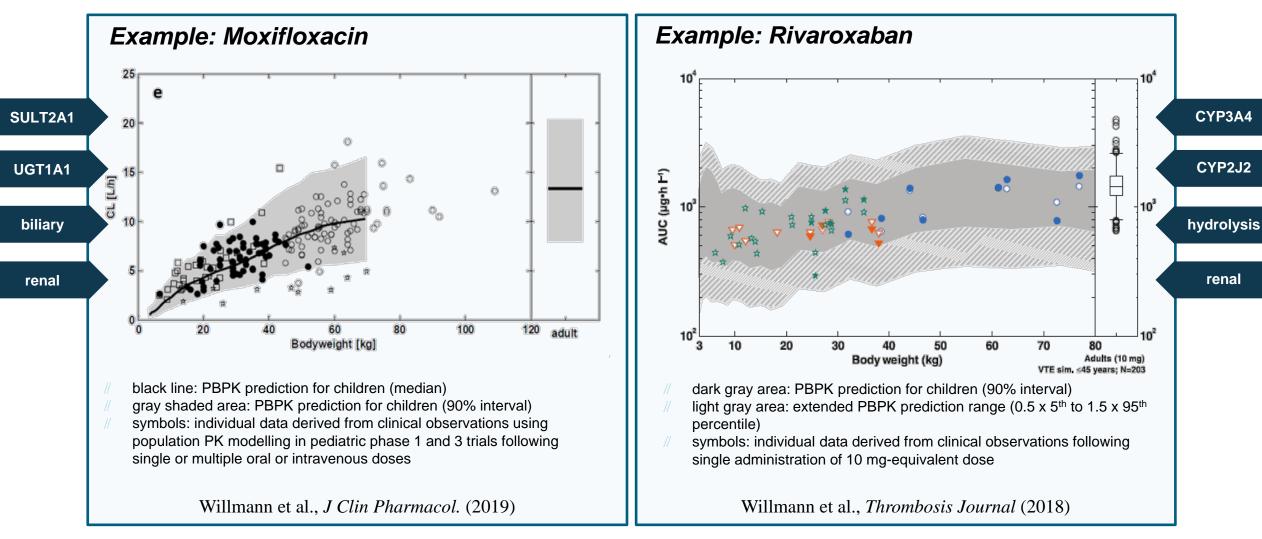
5

Support of clinical decision process by evaluating adequate dosing, sampling or cohort size



Ince I. et al. J. Clin. Pharmacol. 59(S1), 2019

### Pediatric dosing schemes in children supported by PBPK predictions


Overview of Bayer small molecule compounds applied in children since 2005

| Market Name    | Age range (years) | Involved processes in PBPK model                                                  |
|----------------|-------------------|-----------------------------------------------------------------------------------|
| Amikacin       | 0.01 – 16         | GFR                                                                               |
| Ciprofloxacin  | 0.2 - 6.6         | CYP1A2, TS, GFR, Bil.CL                                                           |
| Copanlisib     | 13 – 17           | CYP3A4, PgP, PIK3a                                                                |
| Gadovist       | 0.2 – 18          | GFR                                                                               |
| Levonorgestrel | 12 – 18           | Hepatic CL                                                                        |
| Magnevist      | 0.2 – 2           | GFR                                                                               |
| Moxifloxacin   | 0 – 18            | UGT1A1, SULT2A1, Bil.CL, TS/GFR                                                   |
| Regorafenib    | 2 – 17            | CYP3A4, UGT1A9, Bil.CL                                                            |
| Riociguat      | 6 – 18            | CYP1A1, CYP3A4, CYP3A5, CYP2C8, CYP2J2,UGT1A2, UGT1A9, Bil.CL (Pgp, BCRP), TS/GFR |
| Rivaroxaban    | 0 – 18            | CYP3A4, Plasma Hydrolysis, GFR, TS, CYP2J2                                        |
| Sorafenib      | 1 – 19            | CYP3A4, UGT1A9, Reduction, Unspecific CL                                          |

\* TS : tubular secretion, Bil.CL: biliary clearance, PIK3a: phosphatidylinositol 3-kinase alpha

6

# Prospective evaluation of PBPK predictions with data observed during clinical studies in children are continuously performed

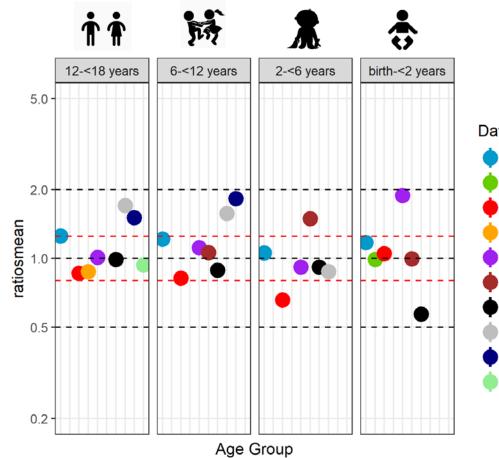


### Evaluation of 10 Bayer Compounds applied in Children

// Evaluated pediatric PBPK models for 10 Bayer compounds

// Via Ratio-calculation PBPK vs reported PK (popPK and NCA of clinical data)

| Evaluation of predictive performance | Ratio of Predicted PBPK vs PopPK and NCA of clinical data-based PK-Parameters<br>AUC <sub>24,ss</sub><br>C <sub>trough</sub><br>C <sub>365days</sub><br>Clearance |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Predefined age groups                | 0-<2 years<br>2-<6 years<br>6-<12 years<br>12-<18 years                                                                                                           |
| PBPK simulation<br>software          | Open Systems Pharmacology <b>(OSP)</b> Suite (PK-Sim / MoBi) *<br>(or formerly BTS Computational Systems Biology Suite)                                           |
| Calculation & Illustration software  | Rstudio Version 1.2.5033                                                                                                                                          |


8

#### BAYER Confirmation of predictive power of PBPK

Predicted versus observed

- For all pediatric age groups
  - 100% of observed data within 2-fold range of prediction
  - 67% within BE interval

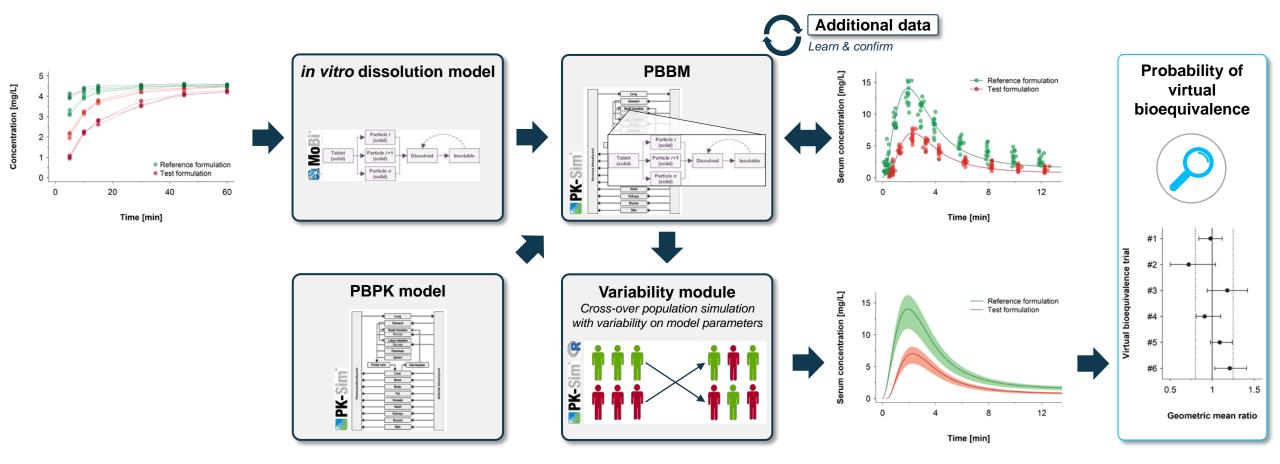
9



#### Data

Gadovist Pred/Obs CL ratio Magnevist Pred/Obs CL ratio Amikacin Pred/Obs CL ratio Copanlisib Pred/Obs AUC ratio Rivaroxaban Pred/Obs AUC ratio Ciprofloxacin Pred/Obs AUC ratio Moxifloxacin Pred/Obs AUC ratio Regorafenib Pred/Obs AUC ratio Riociguat Pred/Obs Ctrough ratio Levonorgestrel Pred/Obs C365 ratio




# Successful and adequate prediction of PBPK models for 10 compounds

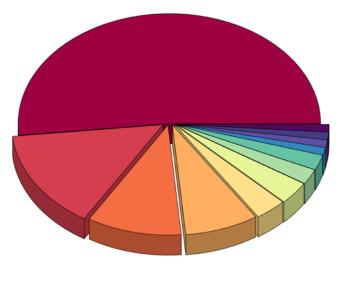
- // Clear illustration of the predictive power of PBPK for guiding dosing schemes for compounds in the pediatric population.
- // Distribution and clearance in children are now relatively well understood, whereas dissolution and absorption often lack a more systematic and mechanistic understanding <sup>[1]</sup>
- // The use of PBPK modeling for biopharmaceutics applications in adults and children is an area of ongoing research

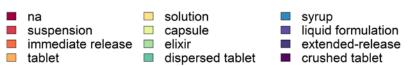
<sup>[1]</sup> Ince I. et al. J. Clin. Pharmacol. 59(S1), 2019. https://doi.org/10.1002/jcph.1497

## Filling the gap: PBPK modeling for biopharmaceutics applications

Workflow for virtual bioequivalence testing




Note: Developed in collaboration with Andrea Edginton (University of Waterloo), Michael Neely (Children's Hospital Los Angeles), and Eleftheria Tsakalozou (FDA); overall support for this work provided by a grant from the FDA (award number: U01FD006549).


11

## Filling the gap: PBPK modeling for biopharmaceutics applications

- FDA encourages the use of PBPK modeling for biopharmaceutics applications under certain conditions <sup>[1]</sup>
- Pediatric PBPK models for oral drug formulations haven been successfully used to predict drug pharmacokinetics
- Recently, first efforts were made to use pediatric PBPK models for virtual bioequivalence assessment <sup>[2,3]</sup>
- Biorelevant media are unlikely to be biopredictive for children; adaptations may be required
- Technical frameworks for virtual bioequivalence testing with OSP are being developed







- <sup>[1]</sup> FDA Draft Guidance for Industry: The Use of Physiologically Based Pharmacokinetic Analyses Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls. September 2020.
- <sup>[2]</sup> Vaidhyanathan S. et al. J. Pharm. Sci. 108(1), 2019. https://doi.org/10.1016/j.xphs.2018.11.005
- <sup>[3]</sup> Miao L et al. AAPS J. 22(107), 2020. https://doi.org/10.1208/s12248-020-00493-6

Bayer AG /// Predictive Performance of PBPK Dose estimates for Pediatric Trials /// October 2020 /// Ibrahim Ince, André Dallmann



## Thank you!

Ibrahim Ince André Dallmann Jan Schlender Sebastian Frechen Katrin Coboeken Stefan Willmann Michael Block Michaela Meyer Thomas Eissing Rolf Burghaus Joerg Lippert

