2021 FDA/CRCG Virtual Workshop Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches September 30, 2021

Use of PBPK in <u>New</u> Drug Development and Regulatory Review - Clinical Pharmacology Perspective -

Shiew-Mei Huang, PhD

Office of Clinical Pharmacology (OCP) Office of Translational Sciences Center for Drug Evaluation and Research U.S. Food and Drug Administration

Model-Informed Drug Development (MIDD)

• PK/PD

• Exposure-

Response

MIDD

Systems

Biology

• QSP

• CiPA

• In Silico

Clinical Trial

Simulations

• QSAR

• QSPR

Development and application of exposure- • PK based, biological, and • PopPK • PBPK statistical models derived from preclinical and clinical data sources • Disease to address drug Models development or Clinical Trial regulatory issues* Models

QSAR: Quantitative structure–activity relationship QSPR: Quantitative structure–property relationship

Dose Prediction
Study Design Optimization
Predict/Characterize
ADME

• Human PK

- Intrinsic /Extrinsic
 Factors/early
 Risk/Benefit
- Dosage Selection
 Labeling
 Population Bridging

PBPK Submissions to OCP (IND/NDA/BLA)

* One submission could include multiple applications

Office of Clinical Pharmacology (OCP)-PBPK Team in **Division of Pharmacometrics Supporting All OCP Divisions** Xinyuan **Yuching** (Susie) Yang Zhang Co-Lead Co-Lead Jianghong Ying-Hong Manuela Guansheng Fan Grimstein Wang Liu

OCP PBPK Team: Roles and Responsibilities

- Policy
 - -Develop best practices/guidance on the use of PBPK
- Review
 - Coordinate and conduct PBPK reviews
 - Evaluate submitted PBPK models (and ask for refinement, if needed)
 - Maintain a PBPK knowledgebase
- Research
- Outreach and Training
 - -Harmonize with other health regulatory agencies
 - Foster communications with thought leaders (scientific community)

PBPK Review Focus at IND stage

- Application of PBPK analysis
 - To support DDI evaluation (to inform protocol design)
 - To support initial dose selection in clinical study in specific populations (e.g., pediatric; organ impairment); first-in-human study
 - To support dosing under Emergency Use Authorization (EUA)
- Discussion focus between the sponsor and the FDA (pIND/IND/MIDD meetings)
 - To discuss the acceptability of the proposed modeling approach

PBPK Review Focus at NDA stage

Challenges: uncertainty in system parameters; limited confidence in in vitroin vivo extrapolation; appropriate model assumptions; short review timeline S-M Huang 7

Case 1- DDI (CYP3A + CYP2C9) & Genetics (Siponimod)										
 PBPK Model <u>Development:</u> CYP3A/2C9 stubstrates Absorption: first order, ka obtained by popPK Distribution: full body PBPK, Vss based on i.v. PK Elimination: CL_{u,int} based 	PBPH • SE (C *3 • DI flu *1	 PBPK Model <u>Validation</u>: SD, MD, and genotype PK (CYP2C9 *1/*1, *2/*3, and *3/*3) DDI with Rifampin, fluconazole in *1/*1, *1/*2, and *1/*3 			 PBPK Model <u>Application</u>: Evaluate the Combined Effects of CYP3A4/CYP2C9 modulation on PK in various CYP2C9 genotypes.(*2/*2 & *2/*3) 					
on popPK analysis Informed Labeling Extracted from MAYZENT labeling: https://www.accessdata.fda.gov/drugsatfda _docs/label/2021/209884s003lbl.pdf		CYP2C9 genotype		+ moderate CYP2C9 <u>AND</u> moderate or strong CYP3A4 inhibitor		+ moderate CYP2C9 <u>AND</u> strong CYP3A4 inducer				
		*1/*1	2 mg		Not recommended Not recommended					
		*1/*2	2 mg							
		*2/*2	2 mg	Not reco						
		*1/*3	1 mg							
Clinical pharmacology review: https://www.accessdata.fda.gov/drugsatfda_do cs/nda/2019/209884Orig1s000ClinPharmR.pdf		*2/*3	1 mg							
		*3/*3	contraindicated							

Case 2- OAT3-mediated DDI (Baricitinib)

FDA

Posada et al 2017 <u>https://pubmed.ncbi.nlm.nih.gov/28749581/</u>; Posada et al 2015 <u>https://pubmed.ncbi.nlm.nih.gov/25504564/</u>

NDA 207924 review and labeling:

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000ClinPharmR.pdf

Case 2- OAT3-mediated DDI (Baricitinib)- Labeling

- The recommended dose of OLUMIANT is **<u>2 mg once daily (2.1)</u>**
- OLUMIANT The recommended dose of OLUMIANT in patients taking strong Organic Anion Transporter 3 (OAT3) inhibitors, such as probenecid, is <u>1 mg once daily</u> [see (7.1) and (12.3)].
- However, simulations with <u>diclofenac and ibuprofen</u> (OAT3 inhibitors with less inhibition potential) predicted <u>minimal effect</u> on the PK of baricitinib [12.3]

OLUMINANT Labeling: Ratio Relative to Reference https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000Lbl.pdf

Case 3- Predicting PK in Pediatrics (Baricitinib)

Assumptions:

- 1. The effective exposure in pediatric patients (2-18 yrs) ~ adult patients with COVID-19.
- 2. The PK difference between adults and pediatrics is similar across different diseases.

References- <u>EUA for Baricitinib CDER Review Document (fda.gov)</u> <u>https://www.fda.gov/media/144473/download</u>

Case 3- Predicting PK in Pediatrics (Baricitinib)-EUA for 2+ YO

Emergency Use Authorization: Baricitinib for COVID-19 in hospitalized adults and pediatric patients 2+ YO requiring oxygen, mechanical ventilation or ECMO

- The dose for <u>adults</u> was recommended based on the efficacy study ACTT-2
- The dose for <u>pediatrics</u> was based on the analyses of historic PK data and PBPK modeling

Age (yrs)	eGFR (mL/min/1.73 m ²)					
	≥60	30 to < 60	15 to < 30			
Adult	4 mg QD for max	2 mg QD for max 14	1 mg QD for max			
	14 days	days	14 days			
9-18	4 mg QD for max	2 mg QD for max 14	1 mg QD for max			
	14 days	days	14 days			
2-9	2 mg QD for max	1 mg QD for max 14	Not			
	14 days	days	recommended			

 Adapted from Fact sheet for EUA of baricitinib: https://www.fda.gov/media/143823/download November 19, 2020 (Baricitinib + remdesivir)

 https://www.fda.gov/media/143823/download November 19, 2020 (Baricitinib + remdesivir)

 https://www.fda.gov/media/143822/download July 28, 2021 (Baricitinib only)
 S-M Huang 13

Application of PBPK Modeling and Simulation for Regulatory Decision Making and Its Impact on US Prescribing Information: An Update on the 2018-2019 Submissions to the US FDA's Office of Clinical Pharmacology

Xinyuan Zhang PhD , Yuching Yang PhD, Manuela Grimstein PhD, Jianghong Fan PhD, Joseph A. Grillo PharmD, Shiew-Mei Huang PhD, Hao Zhu PhD, Yaning Wang PhD

First published: 17 November 2020 | https://doi.org/10.1002/jcph.1767 | Citations: 9

Example of PBPK in Recent Regulatory Review & Labeling

FDA Assessment		-	Labeling Section		Comments	FUF
larotrectinib	PMR: use PBPK modeling to assess the effect of a moderate CYP3A inhibitor on the PK of larotrectinib PMC: use PBPK modeling to assess the effect of a moderate CYP2A inducer on the PK of larotrectinib	PMR PMC	NA		DDI-enzyme	
entrectinib	To assess the effects of a strong (itraconazole) and moderate(erythromycin) CYP3A inhibitor on the PK of entrectinib and its active metabolite M5	adequate	7.1, 12.3			
	To assess the effects of a strong (rifampin) and moderate (efavirenz) CYP3A inducer on the PK of entrectinib and its active metabolite M5	adequate	7.1, 12.3		DDI-enzyme,	
	To predict the effect of entrectinib on CYP3A substrates (midazolam and ethinylestradiol)	inadequate	No		pediatrics	
	To predict the entrectinib PK in pediatric populations (4-20 years of age, and less than 4 years of age) following administration of F1, and F2A/F06 formulations	inadequate	No			
lemborexant	To assess the effect of a weak CYP3A inhibitor on the PK of lemborexant.	adequate	2.2, 7.1, 12.3		DDI-enzyme	

Extracted from Zhang et al. JCP 2020: 60(S1)S160–S178

PBPK workshop November 2019

Development of <u>Best Practices</u> in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making – A Workshop Summary

Daphney Jean,^{*,1} Kunal Naik,^{*,1} Lauren Milligan,¹ Stephen Hall,² Shiew Mei Huang,¹ Nina Isoherranen,³ Colleen Kuemmel,¹ Paul Seo,⁴ Million A. Tegenge,⁵ Yaning Wang,¹ Yuching Yang,¹ Xinyuan Zhang,¹ Liang Zhao,⁶ Ping Zhao,⁷ Jessica Benjamin,¹ Kimberly Bergman,¹ Joseph Grillo,¹ Rajanikanth Madabushi,¹ Fang Wu,⁶ Hao Zhu,¹ Issam Zineh^{‡,1}

Daphney Jean, * Kunal Naik, * Lauren Milligan, et al. CPT-PSP, in press

To Address Challenges in the Applications of PBPK

- Increase effectiveness/efficiency of regulatory review
- Increase data acquisition, analysis, and transparency
- Harmonize PBPK credibility criteria in drug development and regulatory submission

Summary

- PBPK is a critical component of MIDD with increasing frequency of use
- In <u>new</u> drug development, the applications have been in the DDI (metabolism; transport), pediatrics, and other patient factors (e.g., renal/hepatic impairment)
- Challenges need to continue to be addressed:
 - Uncertainty in system parameters (ontogeny, interleukin levels, specific populations)
 - Limited confidence in in vitro- in vivo extrapolation; validity of model assumptions
 - Short review timeline (regulatory applications)
 - Others (see slide #15)

- It is critical to extend applications to integrate effects from multiple patient factors (pediatrics and DDI; older adults and DDI; renal impairment and DDI; genetics and DDI; food and pH effects, others)
- Need to continue to establish good practices in PBPK modeling of <u>new</u> drug & <u>generic</u> drug applications (slide #8, 16)

Acknowledgements

Office of Clinical Pharmacology (OCP) PBPK team

• OCP Review Staff

• Slide Preparation and Review:

Xinyuan (Susie) Zhang, Yuching Yang, Jianghong Fan

Kim Bergman, Qi Liu, Kellie Reynolds, Xinning Yang, Liang Zhao, Issam Zineh

- IND/NDA/BLA Applicants
- Academia Collaborators

FDA U.S. FOOD & DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION & RESEARCH OFFICE OF CLINICAL PHARMACOLOGY