

Development of a Data/Text Analytics Tool to Enhance Quality and Efficiency of Bioequivalence Assessment

Meng Hu, PhD Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs CDER | U.S. FDA

May 26, 2021

Outline

FDA

- Background
- Aims
- Tool Development
- A Quick Look
- Current Status and Future Plan

Background

- Enhancing the quality and efficiency of bioequivalence (BE) assessment will facilitate generic drug approvals.
- The BE assessment process includes:

Straightforward information retrieval	Information retrieval based on sematic	Information summarization	Inferencing/reasoning (e.g., comments, and
(labor-intensive works,	understanding	(generating summary	conclusion)
e.g., data preparation)	(different expressions	paragraphs)	
	for the same meaning)		

Background

- FDA
- Current advances in artificial intelligence (AI) especially data analytics techniques like text analysis and natural language processing (NLP) - offer great promise in developing tools to enhance the BE assessment process.

 The OGD under the Center for Drug Evaluation and Research (CDER) is developing a data/text analytics tool -Bioequivalence Assessment Mate (BEAM) - to address the need for more efficient, consistent, and high-quality BE assessments.

Near-term (pilot)

 <u>Aim</u>: Streamlining labor-intensive assessment works

 <u>Aim</u>: Streamlining labor-intensive assessment works **Mid-term** (in development)

 <u>Aim</u>: Utilizing NLP to realize semantic information retrieval and text summarization; Web-based application

 <u>Aim</u>: Streamlining labor-intensive assessment works **Mid-term** (in development)

 <u>Aim</u>: Utilizing NLP to realize semantic information retrieval and text summarization; Web-based application

Long-term (under planning)

 <u>Aim</u>: Generating draft comments and conclusions

Near-term (pilot)

 <u>Aim</u>: Streamlining labor-intensive assessment works

In this presentation, we mainly focus on the development of the near-term BEAM tool.

Focus of pilot: ANDAs with 2x2 crossover pharmacokinetic (PK) studies

- Fasting, Fed, Sprinkle
- AUC_t, AUC_i, C_{max}

www.fda.gov

Developing BEAM (near-term)

FDA

BEAM Feature Overview

- User-friendly interface by R-Shiny
- A few clicks to finish
 - PK data processing
 - BE statistical analysis
 - BE review report generation
- Documents with all the individual time-concentration plots and the mean plots
- Flexible for different review styles

- Able to process ANDAs with
 - Multiple analytes
 - Truncated area under the curve (AUC)
 - Multiple strengths
 - Need to recalculate PK metrics
 - Baseline corrected/adjusted
 - Different study designs (e.g., replicate or parallel)
 - Pharmacodynamic (PD) endpoint
 - Clinical endpoint
 - In vitro study

A Quick Look at the BEAM Tool

FDA

Start **BE ASSESSMENT MATE**

Welcome Page

Step 1 – PK DATA PROCESSING

FDA

BE ASSESSMENT MATE

Welcome

Step 0 - REPORT WITH eCTD TABL

Step 1 - PK DATA PROCESSING

Step 2 - BE STATISTICAL ANALYSIS

Step 3 - REPORT GENERATION

Data Loading						
oad Concentration Data	Fasting Conc					
For Fasting	Snov	sub	seq	per	🔶 trt 🛊	
Truncated AUC	1	01	RT	1	R	
ange of Time for Truncated AUC (hr)	2	01	RT	2	т	
72 150	3	02	TR	1	Т	
15 30 45 60 75 90 105 120 135 150	4	02	TR	2	R	
	5	03	RT	1	R	
Multiple_Strength	Show	/ing 1 to	5 of 66 ent	ries		
Please input the strength here:	<					
e.g., 50mg						
	Fed	Conc				
Actual_Time	Shov	v 5 🗸	entries			
		sub	seq 🗧	per	🕴 trt 🔅	
Click this button to upload data:	1	02	RT	1	R	
Browse fast-adpc.xpt	2	02	DT	2	т	

Upload complete

Preview of Processed Data

	sub 🔶	seq 🔶	per 🔶	trt 🔶	c1 🔶	c2 🕴	c3	c4	¢ c5	¢ c6	¢ c7 (c8
1	01	RT	1	R	0	118.869	270.646	249.111	1 314.63	1 330.29	8 346.065	332.12
2	01	RT	2	Т	0	243.433	374.845	260.417	7 380.23	6 357.28	2 317.303	350.83
3	02	TR	1	Т	0	257.328	257.346	248.131	1 255.08	3 272.98	8 371.042	293.86
4	02	TR	2	R	3.837	143.125	214.153	253.571	1 266.80	3 226.92	9 243.805	276.25
5	03	RT	1	R	0	457.207	501.709	483.644	1 752.81	5 833.75	1 890.58	856.90
-												
-ed	Conc w 5 ∨ €	entries	per 📥	trt 🛎	c1 💧	c2	c3.	c4 🗎	c5	c6 💧	c7	68
=ed Shov	Conc v 5 v e sub	entries seq ≑ RT	per 🍦 1	trt ≑ R	c1 ≑ 0	c2	c3 ≑ 0	c4 🍦	c5	c6 ≑ 19.616	c7	c8 ≑ 101.419
Fed Show	Conc v 5 v e sub + 02 02	entries seq 🍦 RT RT	per ≑ 1 2	trt ≑ R T	c1 ≑ 0 0	c2 ⊕ 0 0	c3 ≑ 0 27.426	c4 ⊕ 0 67.758	c5	c6 ≑ 19.616 159.831	c7 ≑ 53.495 281.744	c8 101.419 441.953
=ed Shov	Conc v 5 v e sub 02 02 03	entries seq 🛊 RT RT RT	per ∳ 1 2 1	trt ≑ R T R	c1 ♣ 0 0	c2 0 0 0 0 1	c3 ♦ 0 27.426 127.176	c4 ≑ 0 67.758 483.635	c5 6.138 120.414 453.303	c6 ♦ 19.616 159.831 515.979	c7 • 53.495 281.744 • 579.756 •	c8 101.419 441.953 554.754

www.fda.gov

Step 2 – BE STATISTICAL ANALYSIS

Step 0 - REPORT WITH eCTD TABLE **BE Statistical** Analysis Step 1 - PK DATA PROCESSING Step 2 - BE STATISTICAL ANALYSIS Type of Analysis Step 3 - REPORT GENERATION Using Firm-Supplied KE and PK Data new O Using Firm-Supplied KE but Recalculating PK Data O Recalculating KE and PK Data Go4Fasting Go4Fed START Go4Sprinkle Generate Statistical Analysis Report

Time-Concentration Plot of A Random Subject

Note: TimeConcPlot_*.docx in the working folder will contain the mean plots and all the individual plots.

www.fda.gov

Step 3 – REPORT GENERATION

Current Status

- We held 4 training sessions for the pilot version of the tool.
 - BE reviewers participated and used BEAM for an assigned ANDA assessment.
 - We are collecting and analyzing all the feedback from reviewers.
- More than 100 ANDAs have been used to test the tool by the development team.
- We are working with the Office of Computational Sciences in the Office of Translational Sciences in CDER to develop the web-based BEAM.

Next Steps

Mid-term (in development)

 <u>Aim</u>: Utilizing NLP to realize semantic information retrieval and text summarization; Web-based application

Long-term (under planning)

 <u>Aim</u>: Generating draft comments and conclusions FDA

Progress on NLP

- Developing Tools based on Text Analysis and Machine Learning to Facilitate Product-Specific Guidance Development (75F40119C10106)
 - The state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) model was utilized for the NLP application.
 - An NLP pipeline was developed to extract drug product information from drug labeling with minimal human intervention.
 - A manuscript is under review by Frontiers in Research Metrics and Analytics, section Text-mining and Literature-based Discovery.
 - An example on the next page

PSG: Product-Specific Guidance

An example of identifying food effect information from drug labeling, **without keyword "food effect"**

<u>Absorption</u>

NDA 205832

Nintedanib reached maximum plasma concentrations approximately 2 to 4 hours after oral administration as a soft gelatin capsule under fed conditions. The absolute bioavailability of a 100 mg dose was 4.7% (90% CI: 3.62 to 6.08) in healthy volunteers. Absorption and bioavailability are decreased by transporter effects and substantial first-pass metabolism.

After food intake, nintedanib exposure increased by approximately 20% compared to administration under fasted conditions (90% CI: 95.3% to 152.5%) and absorption was delayed (median t_{max} fasted: 2.00 hours; fed: 3.98 hours), irrespective of the food type.

Absorption

NDA 210491

After a single dose in healthy subjects in the fed state, tezacaftor was absorbed with a median (range) time to maximum concentration (t_{max}) of approximately 4 hours (2 to 6 hours). The median (range) t_{max} of ivacaftor was approximately 6 hours (3 to 10 hours) in the fed state.

When a single dose of tezacaftor/ivacaftor was administered with fat-containing foods, tezacaftor exposure was similar and ivacaftor exposure was approximately 3 times higher than when taken in a fasting state.

www.fda.gov

https://dailymed.nlm.nih.gov/dailymed/druglnfo.cfm?setid=da1c9f37-779e-4682-816f-93d0faa4cfc9 https://dailymed.nlm.nih.gov/dailymed/druglnfo.cfm?setid=302ae804-37db-44fd-ac2f-3dbdeda9aa4b

BEAM Project Team

OGD/ORS/DQMM

Ying Yang Xiajing Gong Fenggong Wang Meng Hu Caliope Sarago Lanyan Fang Liang Zhao <u>OGD/OB</u> Devvrat Patel Suman Dandamudi

OGD/ORO/DQMS

Christopher Barnes

Acknowledgement

Tao Bai (OGD/OB) Chitra Mahadevan (OGD/OB) Bing Li (OGD/OB) Russell Storms (OGD/ORO) Lei Zhang (OGD/ORS) Robert Lionberger (OGD/ORS) Samir Shaikh (OGD IO) Sally Choe (OGD IO)

