

### Equivalence Criteria for In Vitro BE Tests for Locally Acting Drug Products: The Earth Mover's Distance Approach Challenging Statistical Issues with In Vitro and In Vivo Bioequivalence Studies Session II: In Vitro BE Statistical Issues April 4, 2019

Meng Hu, PhD. Division of Quantitative Methods and Modeling, Office of Research and Standards OGD | CDER | US FDA



## Disclaimer

• The opinions expressed in this presentation are those of the speaker and may not reflect the position of the U. S. Food and Drug Administration

# Earth











www.fda.gov

FDA

# Outline

- Background
- Method
- Case study
- Conclusion
- Frequent Q&A



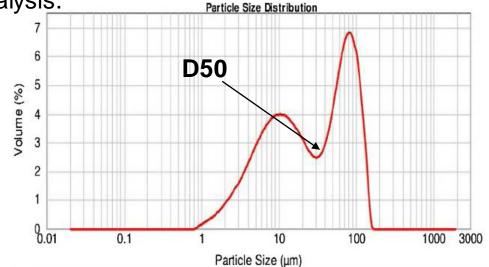


- In vitro bioequivalence (BE) assessment is an important part of BE evaluation.
- By mechanism of drug action, the locally acting drug product frequently needs to utilize in vitro BE study for BE evaluation.
- In this presentation, we report an application of in vitro BE study based on particle size distribution (PSD).





- Considering that PSD is a valuable indicator for characterizing physical and chemical properties of a material, the PSD comparisons can be a useful tool for BE assessment.
- The FDA has recommended the population bioequivalence (PBE) statistical approach on D50 and SPAN values to compare PSD of generic and reference listed drug (RLD) products when appropriate.

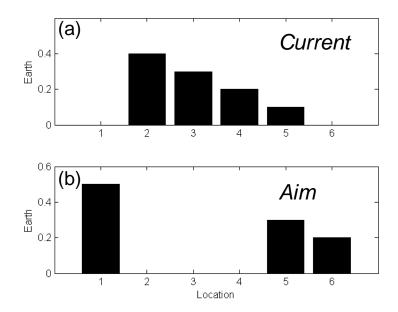

## Why EMD rather than D50/SPAN?



D50: Median SPAN: (D90-D10)/D50 Dv0.5 MEDIAN Dv0.1 Dv0.9 10% 50% 90% below below below this size this size this size

Mono-modal (single-peak) assumption is applied.

For a complex (e.g., multimodal) PSD profile, D50 and SPAN may not be appropriate metrics for the profile analysis.




Here is the place where the **EMD** comes into play for whole profile comparison.

# What is EMD?



EMD was derived from a transportation question:



What is the minimum cost of moving earth from the '*Current*' pile to the '*Aim*' pile?

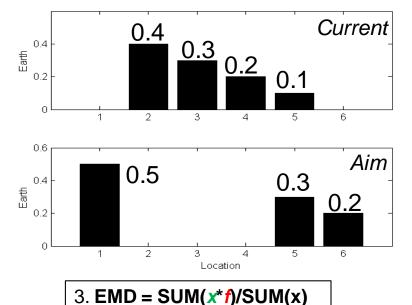
### Note:

- 1. The cost includes 'amount of earth moved' and 'moving distance'.
- 2. If the earth pile is considered as histogram, the EMD can be used to assess the difference between histograms.

### Procedure of EMD

1. Generate location table (f)

#### Locations of 'Aim' pile Location Table (f)


| (י) | L | JCall | 01 |   |   |   |
|-----|---|-------|----|---|---|---|
|     |   | 1     | 5  | 6 | a | ) |
|     |   |       |    |   |   | , |

Locati **'Curre** 

| ons of    | 2 | 1 | 3 | 4 |  |
|-----------|---|---|---|---|--|
| ent' pile | 3 | 2 | 2 | 3 |  |
|           | 4 | 3 | 1 | 2 |  |
|           | 5 | Δ | 0 | 1 |  |

Prior knowledge can be used to define specific distances between locations.

Usage of location table b) enables the comparison between distributions in different spaces.



#### 2. Find working-flow (x) to minimize total cost ( $SUM(x^*f)$ )

| Working-flow table (x)         |   | Locations of 'Aim' pile |        |        |
|--------------------------------|---|-------------------------|--------|--------|
|                                |   | 1                       | 5      | 6      |
|                                | 2 | 0.4000                  | 0      | 0      |
| Locations of<br>'Current' pile | 3 | 0.1000                  | 0.1184 | 0.0816 |
| ourrent pile                   | 4 | 0                       | 0.1210 | 0.0790 |
|                                | 5 | 0                       | 0.0606 | 0.0394 |

#### Note:

- (1) EMD offers the optimal cost considering both the amount (x) and distance (f) of earth needed to move.
- (2) If considering the pile as the histogram, the cost refers to the TRUE distance between histograms.

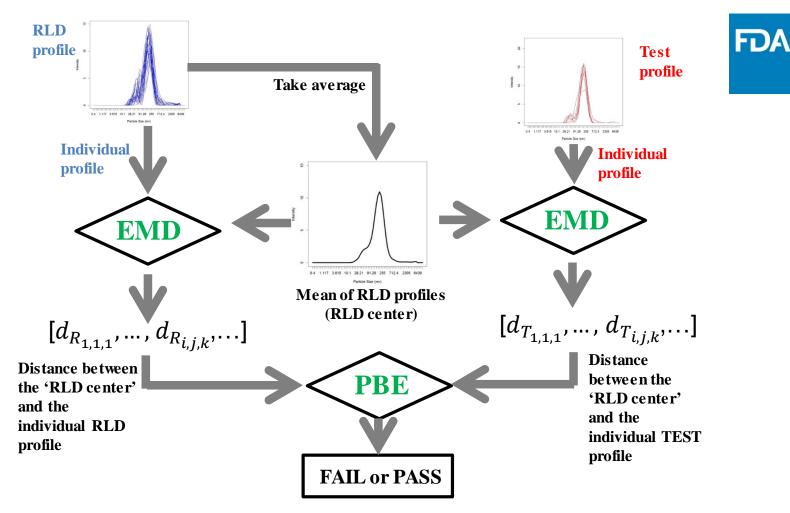
# EMD for profile comparison



- The EMD is a widely used tool in pattern recognition, machine learning, computer vision, etc., especially for discriminant analysis of the histogram-type data.
- PSD (intensity) is the typical histogram data.
- The EMD can be used to compare the PSD profiles for equivalence test.

### **Population Bioequivalence (PBE)**

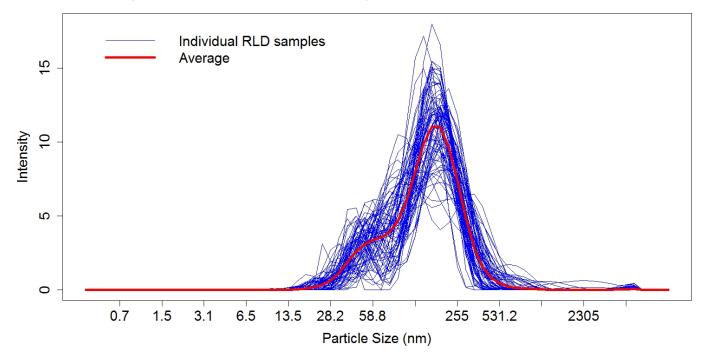
$$\frac{(\mu_{T} - \mu_{R})^{2} + (\sigma_{T}^{2} - \sigma_{R}^{2})}{\sigma_{R}^{2}} \le \theta \quad \text{or} \quad \frac{(\mu_{T} - \mu_{R})^{2} + (\sigma_{T}^{2} - \sigma_{R}^{2})}{\sigma_{T0}^{2}} \le \theta$$


Where,

- $\mu_T \mu_R$ : Mean difference of T (log scale) and R (log scale) products
- $\sigma_T^2, \sigma_R^2$ : Total variance of T and R products
- $\sigma_{TO}$ : Regulatory constant ( $\sigma_{TO} = 0.1$ )
- $\theta_{p:}$  Regulatory constant ( $\theta_p = 2.0891$ ) calculated as following:

$$\frac{\left[\ln(1.11)\right]^2 + 0.01}{0.1^2} = 2.089$$

The BE criterion  $(\theta_p)$  is determined from the log-transformation of the data


#### www.fda.gov



### Case Study – PSD profile analysis



#### PSD profiles from the RLD product

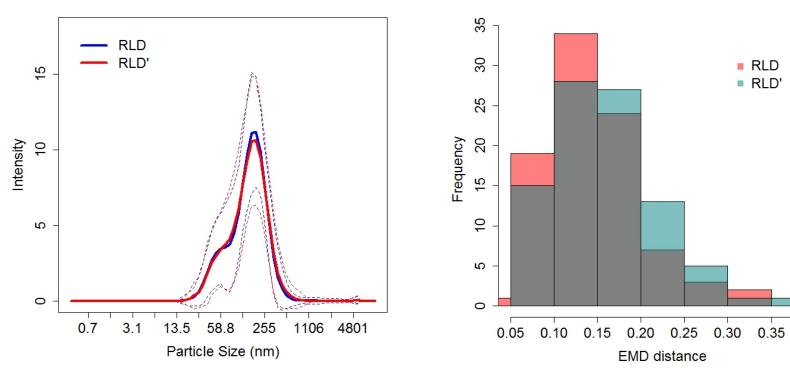


Hypothetical Case Study – PSD profile analysis

- Method validations
  - RLD vs. RLD
  - RLD vs. Negative control
  - Simulations
- Applications to equivalence assessments
  - RLD vs. Test sample X
  - RLD vs. Test sample Y

FD/

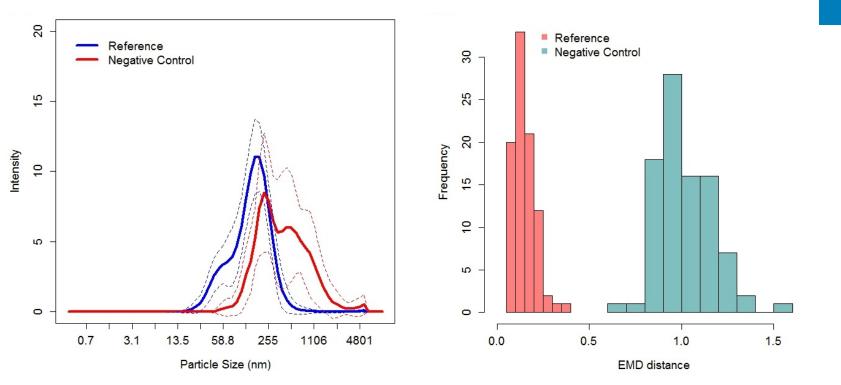



# Data for Hypothetical Study

- Reference listed drug (RLD) 8 lots
- Negative control 3 lots
- Test sample X 3 lots
- Test sample Y 3 lots

Case Study – PSD profile analysis

- Method validations
  - RLD vs. RLD
  - RLD vs. Negative control
  - Simulations
- Applications to equivalence assessments
  - RLD vs. Test sample X
  - RLD vs. Test sample Y


### RLD vs. RLD



The PBE is applied to the EMD distances from two groups, concluding equivalence.

0.40

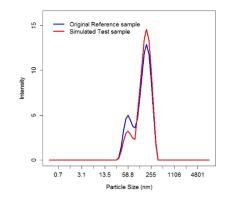
### **RLD vs. Negative Control**

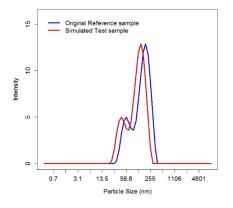


The PBE is applied to the EMD distances from two groups, concluding that equivalence can not be established.

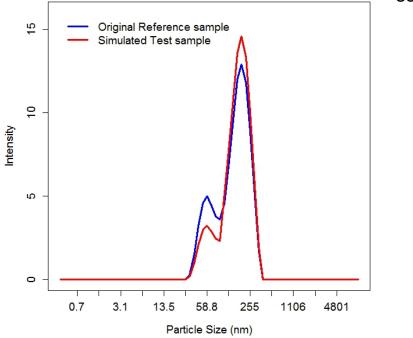


### Simulations – performance test

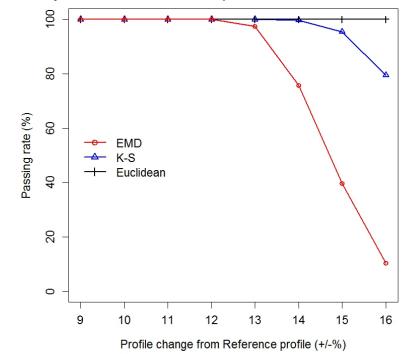

Based on real PSD profiles


Systematically changing profile

Systematically shifting Profile


Compare EMD with other distance methods

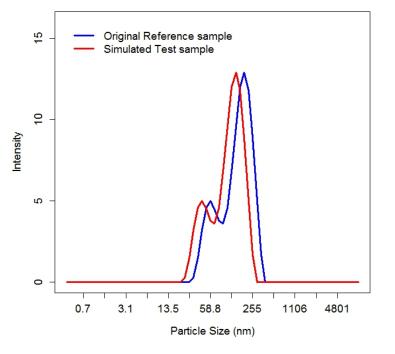
- Euclidean distance
- Kolmogorov–Smirnov (K-S) distance






## **Simulations - Profile changing**




EMD-based equivalence approach provides the best sensitivity to discriminate the profile difference.

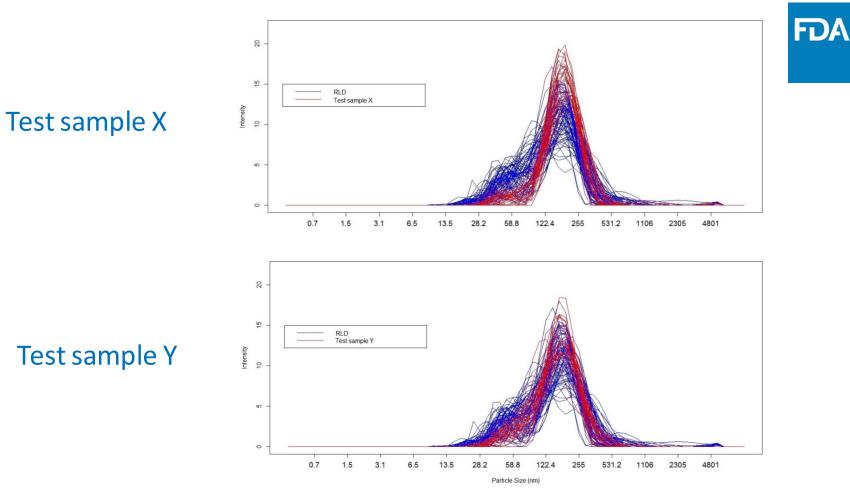


www.fda.gov

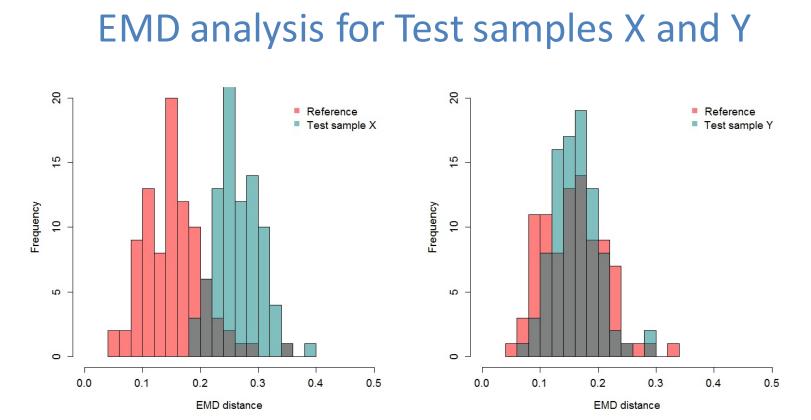
# FDA

## **Simulations - Profile shifting**




### Passing rates (%) of equivalence tests

| Number of    | Equivalence approach based on |     |           |  |
|--------------|-------------------------------|-----|-----------|--|
| shifted bins | EMD                           | K-S | Euclidean |  |
| 1            | 100                           | 93  | 100       |  |
| 2            | 0                             | 0   | 100       |  |
| 3            | 0                             | 0   | 47        |  |


Overall, the EMD-based approach offers the optimal performance.

Case Study – PSD profile analysis

- Method validations
  - RLD vs. RLD
  - RLD vs. Negative control
  - Simulations
- Applications to equivalence assessments
  - RLD vs. Test sample X
  - RLD vs. Test sample Y



#### www.fda.gov



The PBE tests show that equivalence can be established for the test sample Y, but not for the test sample X.

## Conclusion



- An EMD-based equivalence approach can be used for the complex PSD profile comparison between a generic product and the RLD product.
- The method validations show that the EMD approach is able to effectively reject the unaccepted products (e.g., negative control), and pass the accepted products (e.g., reference itself).
- The developed approach can be potentially applied for other profile comparison questions for BE purpose.

## Frequent Q&A



#### **Q**: What data should be provided for FDA's review for this test?

**Ans:** The tabulated raw data of the individual GSD profiles, including the coordinates of the %intensity and particle size for each measurement of each sample, along with the calculated EMD data, should be provided for FDA's review.

#### **Q**: Can the log-transformation step be removed from the PBE analysis?

**Ans:** It is not acceptable to remove the log-transformation step from the PBE analysis without proposing a new BE limit. According to the FDA guidance for the PBE analysis, the current BE limit is determined based on log-transformed data. Therefore, keeping the same BE limit while removing the step of data log-transformation for the PBE analysis is not valid.

**Q**: What tools can be used to implement EMD algorithm?

Ans: A free R package is currently available to implement the EMD calculation

(<u>https://cran.r-project.org/web/packages/emdist/index.html</u>).

### Acknowledgement

OGD/ORS Robert Lionberger Stephanie Choi Liang Zhao Xiaohui Jiang Darby Kozak Mohammad Absar (Now working with OCP)

### OPQ/OTR/DPQR Xiaoming Xu

### <u>OTS/OB</u> Yi Tsong Meiyu Shen Yu-Ting Weng



www.fda.gov