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Potential problems with standard BE approaches: 
Problems with NCA calculations
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NCA for sparse data can be problematic:
metric accuracy and power
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The goal of developed model-based BE method:
nominal type I error, high power
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Figure 4. Global type I error of the bioequivalence tests performed on the treatment effect of AUC (top) and
Cmax (bottom) from noncompartmental analysis (NCA) (right) and nonlinear mixed effects model (NLMEM)
(left) estimates. We perform the Wald tests based on NCA and NLMEM estimates on both parameters; we per-
form only the likelihood ratio test (LRT) on AUC . For NLMEM-based bioequivalence Wald tests, se.ˇT

Cmax
/

are estimated by the delta method. We perform NLMEM-based bioequivalence Wald tests with the estimated
or empirical standard error (SE). We estimate the type I error from 1000 bioequivalence trials simulated under
H0I80% and H0I125% for different sampling designs (N , number of subjects; n, number of samples per subject and
period) and different variability settings Sl;l , Sh;l and Sh;h. The horizontal dashed lines represent the nominal

level at 5% and its 95% prediction interval (Œ3:7%I 6:4%!).

after a single subcutaneous dose of 5 mg. We recruited 36 healthy caucasian adults, and they received
octreotide for endogenous hGH suppression before each treatment period. We separated the three treat-
ment periods by a 7-day wash-out period. We collected blood samples for pharmacokinetic assessments
after dose administration for each period at times 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20 and 24 h. We measured
the concentrations by chemiluminescent immunometric assay [39] with a limit of quantification (LOQ)
of 0:2 ng/mL. Figure 5 (top) displays concentrations versus time for the three formulations. There are
very few concentrations below LOQ for the last sampling times.

We analyse the data with NCA and NLMEM using the SAEM algorithm implemented in MONOLIX
2.4. For NCA analysis, we use the linear trapezoid rule to estimate AUC0!tlast . To obtain the total AUC ,
we compute the terminal slope by log-linear regression using two to four sampling times. As described in
Section 2.1.1, we then analyse the log-transformed individualAUC andCmax using an LMEM including
treatment, period, sequence and subject effects. The reference classes are the Genotropin® treatment, the
first period and the sequence Genotropin®–Omnitrope® powder–Omnitrope® solution for the treatment,
period and sequence covariates, respectively.

For NLMEM analysis, we use a one-compartment model with first-order absorption with a lag
time (tlag) and first-order elimination to describe the data. With this model, for sampling times before
tlag, concentrations are null. For sampling times after tlag, concentrations are described by Equation 4
replacing t by t ! tlag. To determine the structure of the random effects matrices and the residual error
model, we analyse the Genotropin® data. We compare the models using the Bayesian information crite-
ria, the best statistical model corresponding to the smallest Bayesian information criteria [40]. For the
structure of the BSV matrix, we test diagonal, block diagonal and complete matrices. Regarding the
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Model-based analyses of bioequivalence
crossover trials using the stochastic
approximation expectation maximisation
algorithm
Anne Dubois,a*† Marc Lavielle,b Sandro Gsteiger,c
Etienne Pigeoletc and France Mentréa

In this work, we develop a bioequivalence analysis using nonlinear mixed effects models (NLMEM) that mimics
the standard noncompartmental analysis (NCA). We estimate NLMEM parameters, including between-subject
and within-subject variability and treatment, period and sequence effects. We explain how to perform a Wald
test on a secondary parameter, and we propose an extension of the likelihood ratio test for bioequivalence. We
compare these NLMEM-based bioequivalence tests with standard NCA-based tests. We evaluate by simulation
the NCA and NLMEM estimates and the type I error of the bioequivalence tests. For NLMEM, we use the
stochastic approximation expectation maximisation (SAEM) algorithm implemented in MONOLIX. We simulate
crossover trials under H0 using different numbers of subjects and of samples per subject. We simulate with
different settings for between-subject and within-subject variability and for the residual error variance. The
simulation study illustrates the accuracy of NLMEM-based geometric means estimated with the SAEM algo-
rithm, whereas the NCA estimates are biased for sparse design. NCA-based bioequivalence tests show good
type I error except for high variability. For a rich design, type I errors of NLMEM-based bioequivalence tests
(Wald test and likelihood ratio test) do not differ from the nominal level of 5%. Type I errors are inflated for
sparse design. We apply the bioequivalence Wald test based on NCA and NLMEM estimates to a three-way
crossover trial, showing that Omnitrope® (Sandoz GmbH, Kundl, Austria) powder and solution are bioequiva-
lent to Genotropin® (Pfizer Pharma GmbH, Karlsruhe, Germany). NLMEM-based bioequivalence tests are an
alternative to standard NCA-based tests. However, caution is needed for small sample size and highly variable
drug. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: nonlinear mixed effects model; pharmacokinetics; noncompartmental bioequivalence analysis; two
one-sided tests; Wald test; likelihood ratio test

1. Introduction

We perform pharmacokinetic (PK) bioequivalence studies to compare different drug formulations. The
most commonly used design for bioequivalence trials is the two-period, two-sequence, crossover design.
The Food and Drug Administration (FDA) [1] and the European Medicines Evaluation Agency (EMEA)
[2] recommend this design. The FDA and the EMEA recommend to test bioequivalence from the ratios of
the geometric means of two parameters: the area under the curve (AUC ) and the maximal concentration
(Cmax) estimated by noncompartmental analysis (NCA) [3]. As specified in the regulatory guidelines,
the bioequivalence analysis should take into account sources of variation that we can reasonably assume
to have an effect on the endpoints AUC and Cmax. Therefore, linear mixed effects models (LMEM)
including treatment, period, sequence and subject effects are usually used to analyse the log-transformed
individual parameters [4]. We then perform bioequivalence tests on the estimates of the treatment effect.

aINSERM UMR738, University Diderot Paris 7, Paris, France
bINRIA Saclay, Orsay, France
cModeling and Simulation Department Novartis Pharma AG, Basel, Switzerland
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Our developed model-based BE method
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Uncertainty method:
Covariance matrix
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Uncertainty method:
Bootstrap
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Sampling importance re-sampling (SIR)
implemented in NONMEM and PsN
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Methods

SIR algorithm and implementation in NLMEM

The objective of SIR is to provide, for a given model and a

given set of data, a set of m parameter vectors which are
representative of the true and unknown parameter uncer-

tainty distribution. SIR is performed in the following three

steps:

(1) Step 1 (sampling): M (M[m) parameter vectors are

randomly sampled from a proposal distribution.
(2) Step 2 (importance weighting): For each of the

M sampled parameter vectors, an importance ratio is

computed. This importance ratio corresponds to the
probability of being sampled in the true parameter

uncertainty distribution. It is computed as the

likelihood of the data given the parameter vector,
weighted by the likelihood of the parameter vector in

the proposal distribution (Eq. 1).

IR ¼
exp "1

2 dOFV
! "

relPDF
; ð1Þ

where IR is the importance ratio, dOFV is the difference

between the objective function value (OFV) of the
parameter vector and the OFV of the final parameter esti-

mates on the original data, and relPDF is the value of

the probability density function of the parameter vector
relative to the probability density of the final parameter

estimates.

(3) Step 3 (resampling): In the last step, m parameter

vectors are resampled from the pool of M simulated

vectors based on their importance ratio. These

vectors can be used to compute desired CI.

A summary of the SIR procedure is provided in Fig. 1.
Full details on the SIR rationale and implementation are

provided in Online Resource 1.

SIR workflow

In theory, SIR results should be independent on the chosen
SIR settings, which are the proposal distribution and the

number of samples M. However this is not always the case,

for example if the proposal is very far from the true dis-
tribution and the number of samples is too low. In this

work, settings which would be in general appropriate for

NLMEM were explored, and diagnostics to judge a pos-
teriori whether SIR settings should be improved were

developed.

SIR was initially proposed to be performed based on a
default workflow, where the estimated ‘‘sandwich’’ vari-

ance–covariance matrix, which is a function of the Hessian

and the cross-product gradient, was used as proposal dis-
tribution. The number of samples M was set to 5000 and

the number of resamples m was set to 1000.

Potential improvements of this workflow were then
investigated. First, different numbers of samples were

investigated (M = 2000, 4000, 6000, 8000 and 10,000).
The number of resamples m was not modified, as this

number was chosen in order to have sufficient precision on

the outer bounds of the CI of interest, which was the 95 %
CI. Note that m can be chosen freely depending on the

desired precision of the uncertainty. What is important for

SIR is thus not so much the intrinsic value of M, but rather
its relation to m, expressed as M/m ratios (M/m = 2, 4, 6, 8

and 10). One should choose m in the same manner as the

number of samples in a bootstrap, i.e., depending on the
intended use. For example, m = 1000 would be recom-

mended to compute a 95 % CI. M would then derived from

the recommended M/m ratio, 5 by default, to be 5000.
Secondly, different proposal distributions were investi-

gated. They corresponded to inflations and deflations of the

covariance matrix, for which all variances and covariances
of the uncertainty distribution were either increased or

decreased by a certain factor (0.5, 0.75 1.5 and 2). It is very

important to note that proposal distributions not based on
the covariance matrix can also be used, especially if the

covariance matrix is not estimable. This is a major

advantage of SIR which will be further detailed in the
discussion. Lastly, performing SIR using resampling with

replacement in order to increase SIR efficiency was also

investigated. Because replacement was not recommended,
results from this investigation are not discussed here, but

they are provided in Online Resource 2.
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Fig. 1 The three steps of the SIR procedure
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Abstract Taking parameter uncertainty into account is key
to make drug development decisions such as testing whether

trial endpoints meet defined criteria. Currently usedmethods

for assessing parameter uncertainty in NLMEM have limi-
tations, and there is a lack of diagnostics for when these

limitations occur. In this work, a method based on sampling

importance resampling (SIR) is proposed, which has the
advantage of being free of distributional assumptions and

does not require repeated parameter estimation. To perform

SIR, a high number of parameter vectors are simulated from
a given proposal uncertainty distribution. Their likelihood

given the true uncertainty is then approximated by the ratio

between the likelihood of the data given each vector and the
likelihood of each vector given the proposal distribution,

called the importance ratio. Non-parametric uncertainty

distributions are obtained by resampling parameter vectors
according to probabilities proportional to their importance

ratios. Two simulation examples and three real data exam-

ples were used to define how SIR should be performed with
NLMEM and to investigate the performance of the method.

The simulation examples showed that SIR was able to
recover the true parameter uncertainty. The real data exam-

ples showed that parameter 95 % confidence intervals (CI)

obtained with SIR, the covariance matrix, bootstrap and log-
likelihood profiling were generally in agreement when 95 %

CI were symmetric. For parameters showing asymmetric

95 % CI, SIR 95 % CI provided a close agreement with log-
likelihood profiling but often differed from bootstrap 95 %

CI which had been shown to be suboptimal for the chosen

examples. This work also provides guidance towards the SIR
workflow, i.e.,which proposal distribution to choose and how

many parameter vectors to sample when performing SIR,

using diagnostics developed for this purpose. SIR is a
promising approach for assessing parameter uncertainty as it

is applicable in many situations where other methods for

assessing parameter uncertainty fail, such as in the presence
of small datasets, highly nonlinear models or meta-analysis.

Keywords Sampling importance resampling ! Parameter

uncertainty ! Confidence intervals ! Asymptotic covariance
matrix ! Nonlinear mixed-effects models ! Bootstrap

Introduction

Nonlinear mixed effects models (NLMEM) are increas-
ingly used to support drug development [1]. Even though

NLMEM have been mainly employed for exploratory

purposes, they have been advocated as powerful tools also
in confirmatory settings [2]. In such settings, the adequacy

of the structural and distributional assumptions inherent to
NLMEM is particularly important in order to draw correct

conclusions. One of the aspects requiring scrutiny is

parameter uncertainty. Indeed, parameter uncertainty is key
to make drug development decisions such as testing whe-

ther trial endpoints meet defined criteria, calculating the

power of a prospected trial [3], taking a go/no go decision
at an interim analysis [4], selecting doses for a Phase II trial

[5], or optimizing dosing regimen [6]. Parameter uncer-

tainty in NLMEM is usually obtained from the asymptotic
covariance matrix at the maximum likelihood parameter

Electronic supplementary material The online version of this
article (doi:10.1007/s10928-016-9487-8) contains supplementary
material, which is available to authorized users.

& Anne-Gaëlle Dosne
annegaelle.dosne@farmbio.uu.se

1 Department of Pharmaceutical Biosciences, Uppsala
University, Box 591, 751 24 Uppsala, Sweden

123

J Pharmacokinet Pharmacodyn (2016) 43:583–596

DOI 10.1007/s10928-016-9487-8



Methods

SIR algorithm and implementation in NLMEM

The objective of SIR is to provide, for a given model and a

given set of data, a set of m parameter vectors which are
representative of the true and unknown parameter uncer-

tainty distribution. SIR is performed in the following three

steps:

(1) Step 1 (sampling): M (M[m) parameter vectors are

randomly sampled from a proposal distribution.
(2) Step 2 (importance weighting): For each of the

M sampled parameter vectors, an importance ratio is

computed. This importance ratio corresponds to the
probability of being sampled in the true parameter

uncertainty distribution. It is computed as the

likelihood of the data given the parameter vector,
weighted by the likelihood of the parameter vector in

the proposal distribution (Eq. 1).

IR ¼
exp "1

2 dOFV
! "

relPDF
; ð1Þ

where IR is the importance ratio, dOFV is the difference

between the objective function value (OFV) of the
parameter vector and the OFV of the final parameter esti-

mates on the original data, and relPDF is the value of

the probability density function of the parameter vector
relative to the probability density of the final parameter

estimates.

(3) Step 3 (resampling): In the last step, m parameter

vectors are resampled from the pool of M simulated

vectors based on their importance ratio. These

vectors can be used to compute desired CI.

A summary of the SIR procedure is provided in Fig. 1.
Full details on the SIR rationale and implementation are

provided in Online Resource 1.

SIR workflow

In theory, SIR results should be independent on the chosen
SIR settings, which are the proposal distribution and the

number of samples M. However this is not always the case,

for example if the proposal is very far from the true dis-
tribution and the number of samples is too low. In this

work, settings which would be in general appropriate for

NLMEM were explored, and diagnostics to judge a pos-
teriori whether SIR settings should be improved were

developed.

SIR was initially proposed to be performed based on a
default workflow, where the estimated ‘‘sandwich’’ vari-

ance–covariance matrix, which is a function of the Hessian

and the cross-product gradient, was used as proposal dis-
tribution. The number of samples M was set to 5000 and

the number of resamples m was set to 1000.

Potential improvements of this workflow were then
investigated. First, different numbers of samples were

investigated (M = 2000, 4000, 6000, 8000 and 10,000).
The number of resamples m was not modified, as this

number was chosen in order to have sufficient precision on

the outer bounds of the CI of interest, which was the 95 %
CI. Note that m can be chosen freely depending on the

desired precision of the uncertainty. What is important for

SIR is thus not so much the intrinsic value of M, but rather
its relation to m, expressed as M/m ratios (M/m = 2, 4, 6, 8

and 10). One should choose m in the same manner as the

number of samples in a bootstrap, i.e., depending on the
intended use. For example, m = 1000 would be recom-

mended to compute a 95 % CI. M would then derived from

the recommended M/m ratio, 5 by default, to be 5000.
Secondly, different proposal distributions were investi-

gated. They corresponded to inflations and deflations of the

covariance matrix, for which all variances and covariances
of the uncertainty distribution were either increased or

decreased by a certain factor (0.5, 0.75 1.5 and 2). It is very

important to note that proposal distributions not based on
the covariance matrix can also be used, especially if the

covariance matrix is not estimable. This is a major

advantage of SIR which will be further detailed in the
discussion. Lastly, performing SIR using resampling with

replacement in order to increase SIR efficiency was also

investigated. Because replacement was not recommended,
results from this investigation are not discussed here, but

they are provided in Online Resource 2.
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Simulation flowchart
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Model used to generate simulated data
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FTRT: test/ref ratio in F (i.e. treatment effect)
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Variance 
Level BCDEFFG BGEFFG BH&EFFG BIEFJG

Low 0.2 0.1 0.2 0.1

High 0.5 0.5 0.5 0.15

Proportional residual error with σ2=0.01

FTRT=0.8 or 1.25 Type I error

FTRT=0.9 Power

Based on: Dubois et al., Stat. Med., 2010.



Model used for BE analysis
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Study design:
2-period crossover study
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Data
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Data

BE 
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with trt effect

Simulation Num=500

Design Subject No Sampling No Sampling times

1 40 10 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24

2 24 10 0.25, 0.5, 1, 2, 3.5, 5, 7, 9, 12, 24

3 24 5 0.25, 1.5, 3.35, 12, 24

4 40 3 0.25, 3.35, 24



Simulation study: type I error at FTRT=0.8
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Simulation study type I error at FTRT=1.25
SIR had controlled type I error
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Type I error in the simulation study
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Type I error in the simulation study
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Type I error in the simulation study
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Type I error in the simulation study
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Density plot of Mean ratio, CI_upper and CI_lower
N=24, n=10, high variation 
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Comparison of 3 uncertainty methods
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Model-based method showed higher power than 
NCA-based method
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NCA-based BE method:
Power: AUClast > Cmax > AUCinf
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Density plot of Mean ratio, CI_upper and CI_lower
N=24, n=10, high variation
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NCA-based BE method:
Power: AUClast > Cmax > AUCinf
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Density plot of Mean ratio, CI_upper and CI_lower
N=24, n=10, high variation
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NCA-based BE method:
Power: AUClast > Cmax > AUCinf
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Information flow in NCA-based BE method
Use different information for each metric analysis

28LMEM: linear mixed effect model
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Illustration for model-based method
Integrating all information for conclusion

29NLMEM: Non-linear mixed effect model
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Our developed model-based BE method
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Summary of developed BE method

• Three uncertainty methods
– SIR is the best

• Advantage of model-based methods
– Acceptable type I error and high power
– Can choose between geometric mean and typical mean
– No requirement for analytical solutions

• Assumption – Model structure is correct
– May use previous pharmacokinetics (PK) model from 

originator product
– Assumption violation à Model averaging

31



• Optimal experimental design software
• https://andrewhooker.github.io/PopED/

Software

PopED

• NCA Calculation and Population PK Model Diagnosis
• https://github.com/UUPharmacometrics/ncappc

ncappc

bemod
• Model based BE testing
• In development

• SIR
• Bootstrap
• https://uupharmacometrics.github.io/PsN/

https://andrewhooker.github.io/PopED/
https://github.com/UUPharmacometrics/ncappc
https://uupharmacometrics.github.io/PsN/
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