

From Q2 to QbD: The Influence of Formulation Changes on MDI Performance

Jay T. Holt,¹ Dennis Sandell,² Anthony Hickey¹ ¹Cirrus Pharmaceuticals – a Kemwell company ²S5 Consulting

RDD Asia - November 13, 2014

Outline

- QbD and Generic pMDI Product Development
- Reverse Engineering of a Commercial Albuterol Sulfate MDI and Model System Development
- Design of Experiments to Explore Impact of Formulation Changes
 - Delivered dose (DD)
 - Aerodynamic particle size distribution (APSD)
- Conclusions

MDI Generic Product Cirrus *A KEMWELL company* Development

Qualitative sameness (Q1): Test product uses the same inactive ingredient(s) as the Reference product.

Quantitative sameness (Q2): concentration of inactive ingredients within ± 5% of those used in Reference product.

- FDA Draft Guidance (2013): Draft Guidance on Albuterol Sulfate
- But ± 5% range is arbitrary

Under Quality by Design (QbD), one should understand how changes in critical quality attributes (CQAs) influence product performance.

ICH Guideline (2009): Q8(R2) pharmaceutical development.

MDI Generic Product Cirrus a KEMWELL company Development

<u>Premise</u>: A QbD approach should define the design space within which a TEST product performs equivalently to the reference listed drug (RLD). This would provide a scientific basis for inactive ingredient levels.

<u>Goal</u>: Evaluate effects of varying an MDI formulation using a multivariate statistical approach.

- Use a range of inactive ingredients to explore the design space within and outside the Q2 acceptance range of ± 5%.
- Evaluate effect of primary particle size.
- Generate a target product profile around a commercial albuterol sulfate MDI, which will form the basis of a model system for evaluating the formulation effects.

Reverse Engineering

3 lots of marketed product were reverse engineered to identify the following Q1 / Q2 equivalent formulation:

Reference Listed Drug (RLD) Formulation (% w/w)

Albuterol Sulfate	EtOH	Oleic Acid	HFA-134a
0.38	14.4	0.03	85.20

Estimated primary particle size via laser diffraction (µm)

X ₁₀	X ₅₀	X ₉₀
0.7	1.5	3.4

Model System Development

MDI Filling:

- Albuterol sulfate milled to target size
- 1-step pressure filling (Pamasol suspension filler) at 3 L
- 17-mL uncoated cans (Presspart), 28-µL valves (Aptar), and actuators (RLD)

Aerosol Testing:

• USP methodologies for delivered dose uniformity through life & aerodynamic particle size distribution (APSD) via Next Generation Impactor (NGI)

DD Uniformity: RLD & Model System

- RLD & model system show very similar performance.
- A downward through-life trend is observed in both systems.

Cirrus

a **KEMWELL** company

APSD via NGI:

Comparison of RLD & Model System

• RLD & model system show similar performance.

- Goal 1: Assess potential effects
 - API primary particle size (X₅₀)
 - EtOH content
 - Oleic acid content

	ΑΡΙ Χ ₅₀ (μm)	EtOH (% w/w)	Oleic Acid (% w/w)
RLD	1.5	14.4	0.03
DoE (High)	2.5	20%	0.1% *
DoE (Med)	1.65	14%	0.02%
DoE (Low)	1.4	7%	0.005%

***OA level extended to 0.25%**

- Goal 2: Establish models
 - How do different responses vary with changes in the three factors
 - $\circ~$ Estimate effects of any change within experimental domain
- Consider potential conflicts in objectives
 - For the first objective above, it is optimal with two levels for each factor
 - For the second objective, one would like "many" levels of each
- Compromise approach
 - Three levels for each factor
 - \circ Reduced factorial design: $3^3 = 27$ reduced to 18 batches
 - This allows estimation of main effects and all two-factor interactions

Χ ₅₀ (μm)	EtOH (% w/w)	OA (% w/w)	Χ ₅₀ (μm)	EtOH (% w/w)	OA (% w/
*1.4	7	0.005	1.65	14	0.10
1.4	7	0.02	1.65	20	0.00
1.4	14	0.005	1.65	20	0.02
1.4	14	0.10	2.5	7	0.02
1.4	20	0.02	*2.5	7	0.10
*1.4	20	0.10	2.5	14	0.00
1.65	7	0.005	2.5	14	0.02
1.65	7	0.10	*2.5	20	0.00
1.65	14	0.02	2.5	20	0.1

Drug solubility at 20% ≈ drug solubility at 14%.

* "Corner batches" = combination of high & low levels

• Tested first to confirm the experimental design

Additional batches added to evaluate OA up to 0.25%

Χ ₅₀ (μm)	EtOH (% w/w)	OA (% w/w)
2.5	2	0.005
2.5	2	0.25
2.5	5	0.005
2.5	5	0.25

Test Plan

- Batch Testing (14 ± 2 days after filling)
 - EtOH & OA (to confirm successful manufacture & for modelling)
 - Total can content (to confirm manufacture)
 - Moisture content
 - Volumetric particle size distribution by laser diffraction
 - **o DDU & APSD (primary performance characteristics)**
- Delivered Dose Uniformity
 - Two doses at each life-stages of Beg, Mid, & End (6 doses in total per can), for each of n cans/batch
 - End-points: DD average (BME), Trend (B-E as % of B) & RSD of DD
 - All testing by same analyst
- Aerodynamic Particle Size Distribution
 - Alberta Idealized Throat (beg & end doses) & USP throat (beg doses) for each of n cans/batch
 - End-point: FPD < 5 μm
 - All testing by same analyst

Delivered Dose Sample Size: *A KEMWELL company* Probability to Detect Difference in BME

- With one can per batch (18 in total) a 4 µg difference (about 5% of 86.5 µg) is 96% sure to be detected
- One can is not enough for a good characterization of a batch, but the power is fully sufficient to assess effects and for modeling
- Sample size = 1 can/batch (plus 2 extra per batch for the 4 design corners)

APSD Sample Size

Probability to Detect Difference in FPDs

- With one can per batch (18 in total) a 6 µg difference (about 11% of 52.5 µg) is 82% sure to be detected
- Initial testing with AIT throat B&E and USP throat B only for each can (54 NGIs in total)

Evaluation Plan

- 1. Visual assessment of data
- 2. ANOVA
 - Any statistically significant main effects or interactions?
 - Strongest factors?
- 3. Modeling
 - Will partly be guided by findings above
 - Both linear and non-linear models will be considered

$$DD = \alpha_0 + \alpha_1 X 50 + \alpha_2 EtOH + \alpha_3 OA$$

$$DD = (\alpha_0 + \alpha_1 X 50)(\beta_0 + \beta_1 EtOH)(\delta_0 + \delta_1 OA)$$

$$DD = \alpha_0 + \alpha_1 X 50^{\lambda_1} + \alpha_2 EtOH^{\lambda_2} + \alpha_3 OA^{\lambda_3}$$

$$DD = \lambda \cdot X 50^{\lambda_1} \cdot EtOH^{\lambda_2} \cdot OA^{\lambda_3}$$

Delivered Dose Through Life

- Delivered dose ranges from 40 to 111 µg, with a mean of about 80 µg.
- A decreasing through-life trend is observed.

Delivered Dose

ANOVA and Least Squared Means

ANOVA for batches 1-18 (p values)

Effect	Mean	Mean	Mean	Mean	Trend	RSD
		B	Μ	E	%(B-E)/B	
X ₅₀	0.3823	0.4717	0.5253	0.2056	0.6172	0.4183
EtOH	0.1211	0.0193	0.1716	0.5612	0.0059	0.0004
OA	0.4188	0.2645	0.7131	0.5265	0.4701	0.1268
X ₅₀ *EtOH	0.6381	0.4597	0.5200	0.6819	0.3921	0.3771
X ₅₀ *OA	0.1863	0.2245	0.2273	0.1264	0.9686	0.9660
EtOH*OA	0.3459	0.4899	0.5339	0.1684	0.4589	0.0521

Least squared means for each level of EtOH (batches 1-18)

EtOH (%)			Mean M (µg)			RSD (%)
7	80	90	81	68	24.1	14.3
14	77	86	76	71	17.3	9.5
20	71	75	70	68	10.1	5.8

Large effects are observed for Mean B DD, Trend, & RSD

Delivered Dose

ANOVA and Least Squared Means

ANOVA for batches 19-22 (p values)

Effect	Mean	Mean B	Mean M	Mean E	Trend	RSD
EtOH	0.2762	0.7158	0.4203	0.0691	0.0092	0.0208
OA	0.2761	0.2399	0.3670	0.2050	0.0720	0.2289

Least squared means for each level of EtOH (batches 19-22)

EtOH (%)		Mean B (µg)		Mean E (µg)	Trend (%)	RSD (%)
2	68	85	71	47	45.0	26.2
5	76	88	78	64	27.4	14.6

- Still no effect by oleic acid (despite the wider range studied).
- EtOH has significant effects on trend and RSD.

Delivered Dose

Trend(%) vs EtOH Content

Trend (B-E as % of B)

The delivered dose Trend(%) decreases as EtOH increases.

Delivered Dose Models

Multivariate models for mean delivered dose

- All 3 factors used
- All 22 batches used in a pooled analysis

 $Mean DD = a + b(X_{50}) + c(EtOH) + d(OA)$

• Explains only 12% of the total variation

Based on residual plots for each factor, the following non-linear model was tested:

Mean DD =

 $a1 + a2(X_{50}) + a3(X_{50})^{2} + a4(EtOH) + a5(EtOH)^{2} + a6(X_{50})(EtOH) + a7(OA)$

• Explains 28% of total variation

How Would a 5% Change Cirrus a KEMWELL company in a Factor Affect Delivered Dose?

 Set 2 factors at their nominal values and change the third factor within 95% -105% of target:

X ₅₀	EtOH	OA	Mean DD (µg)
1.501 – 1.659	14.4	0.03	75.78 – 77.83
1.58	13.68 – 15.12	0.03	76.38 – 76.96
1.58	14.4	0.0285 - 0.0315	76.68 - 76.72

Result: at most approx 2 µg change in DD

2) Change all 3 factors 5% at once. Result: approx 2.5 µg maximum change in DD

What Design Space Will Cirrus a KEMWELL company

the Delivered Dose Data Support?

Assuming we want delivered dose to be 95% to 105% of target

Data do not rule out formulation changes outside of ±5% of EtOH target.

Multivariate Models for Delivered Dose RSD

$RSD = a + b(ln(X_{50})) + c(ln(EtOH)) + d(ln(OA))$

• Explains 85% of the total variation

How would a 5% change in a factor affect the DD RSD?

- If we set 2 factors at nominal values & vary the third factor, the largest effect is changing ethanol, where RSD increases by 0.7%
- Changing all 3 factors at once by 5% causes RSD to vary in range of 7.92 to 8.95%.

What Design Space Will Cirrus a KEMWELL company the Delivered Dose Data Support?

Assuming we want RSD < 10%

Data do not rule out formulation changes outside of ±5% of EtOH target.

Delivered Dose Summary

- Mean DD is not significantly affected by any of the three studied factors: X₅₀, EtOH, or OA
- EtOH does have statistically significant effects on beginning mean DD, through-life trend, & RSD.
 - All decrease with increasing EtOH
- Oleic acid has no effect.
- Using developed model, it was found that varying the factors up to 5% from target resulted in marginal effect on mean DD (2 µg), but the effect on RSD was much stronger (up to 1% absolute increase).

APSD at Beginning & End of Life for AIT

28

Individual FPDs

by Batch & Throat / Life Stage

- Strong formulation effects are apparent
- No difference between AIT & USP

APSD ANOVA

For Batches 1 - 18

p-values

Effect	FPD<5 (μg)				
Effect	AIT/B	USP/B	AIT/E		
X ₅₀	0.0001	0.0006	0.0000		
EtOH	0.0000	0.0000	0.0000		
OA	0.9688	0.5790	0.6903		
X ₅₀ *EtOH	0.6679	0.0800	0.0310		
X ₅₀ *OA	0.0938	0.4929	0.3051		
EtOH*OA	0.3104	0.1980	0.3774		

- For FPD
 - X₅₀ and EtOH have strong effects
 - OA has no effect
 - One statistically significant interaction of X₅₀*EtOH

APSD: Least Squared Means Cirrus a KEMWELL company

20

33.0

23.6

18.4

79%

Δ

85%

116%

112%

232%

for All Combinations of X₅₀ & EtOH

FPD < 5 microns

14

41.6

34.0

22.8

82%

EtOH

AIT/B

 X_{50}

1.4

1.65

2.5

Δ

7

61.0

51.0

39.0

56%

V	EtOH				
X ₅₀	7	14	20	Δ	
1.4	55.1	36.3	27.0	104%	
1.65	41.8	29.2	21.0	99%	
2.5	32.6	29.8	18.0	81%	
Δ	69%	22%	50%	206%	

FPD
increased 3-
fold when
reducing
factors from
higher to
lower levels.

USP/B

AIT/E

V	EtOH			
X ₅₀	7	14	20	Δ
1.4	52.0	35.5	26.1	99%
1.65	38.2	27.4	19.7	94%
2.5	29.0	22.5	16.4	77%
Δ	79%	58%	59%	217%

APSD ANOVA

For Batches 19 – 22

Oleic acid range = 0.005 to 0.25%

p-values:

Effect	FPD<5 (μg)		
Effect	AIT/B	USP/B	AIT/E
EtOH	0.2698	0.2759	0.0644
OA	0.1846	0.2179	0.1508

- Again, OA has no effect
- EtOH at 2 to 5%
 - No effect on total dose
 - No effect on FPD

APSD

FPD vs Actual EtOH, by Target X₅₀

- The relation between FPD and EtOH depends on X₅₀
- Relationships are linear except for 2 batches at 2% EtOH

APSD Models

Variability

$\frac{\text{Model Fitted}}{\text{FPD}<5} = a1 + a2 \cdot X_{50} + a3 \cdot \text{EtOH}$	Explained 71.3%
$FPD < 5 = b1 + b2 \cdot X_{50} + b3 \cdot EtOH + b4 \cdot X_{50} \cdot EtOH$	84.0%
$FPD < 5 = c1 + c2 \cdot ln(X_{50}) + c3 \cdot ln(EtOH)$	82.9%
FPD<5 = d1 + d2·ln(X ₅₀) + d3·ln(EtOH) + d4·ln(X ₅₀)·ln(EtOH)	86.0%

 $ln(FPD<5) = e1 + e2 \cdot ln(X_{50}) + e3 \cdot ln(EtOH) + 85.9\%$ e4 · ln(X₅₀) · ln(EtOH)

How Would a 5% Change *KEMWELL company* in One Factor Affect FPD?

X ₅₀	EtOH	FPD<5 (μg)
1.501 – 1.659	14.4	31.34 - 33.65
1.58	13.68 – 15.12	31.41 – 33.58

Both factors have a strong influence, but changes within 95% to 105% cause only a marginal change in FPD.

The combined effect of both factors being changed within 95% to 105% gave FPD of $30.32 - 34.81 \mu g$ (maximum change of about 14%).

What Design Space Will Cirrus a KEMWELL company the APSD Data Support?

Assuming a specification of FPD of 21 – 43 µg:

Data do not rule out formulation changes outside of ±5% of EtOH target.

APSD Summary

- A strong effect by both X₅₀ and EtOH on the FPD was observed.
 - FPD decreased with increasing X₅₀ or EtOH
 - Results consistent between AIT and USP
 - Results consistent between beg & end of can
 - Size of effect is large (3x for low combination of factors compared to high combination)
 - Changes within ±5% of targets results in only about a 4.5 µg difference in FPD.
 - The design space for a "typical" specification for FPD has a fairly wide operating range.
- OA did not have a significant effect on FPD over range evaluated.

a **KEMWELL** company

Conclusion

- An albuterol sulfate model system was developed based on a commercial product and used for statistically designed experiments to evaluate the impact of formulation changes.
- Varying the formulation parameters within the Q2 "limit" of ± 5% results in small changes to key responses of mean DD and FPD. The design spaces show that it may be feasible to accommodate formulation changes outside of ± 5% via a QbD approach.
- Would differences in formulation and *in vitro* performance translate into differences in clinical (e.g. PK) performance?

Acknowledgements

Cirrus Scientists:

- Ernest Vallorz III
- Kevin Straughn
- Ramil Menzeleev
- Randy Lewis
- Ben Zechinati

The authors appreciate the support of the United States Food & Drug Administration, grant *1U01FD004943-01*.