Preclinical Models for Pulmonary Delivery

11/6/2019 Günther Hochhaus

Slide 1

Pulmonary Delivery is rather Complex

Slide 2

First-pass inactivation

Pulmonary Targeting In Rat Ex-vivo Receptor Binding Assay

Slide 3

Optimized Characteristics of device/formulation/API for targeted delivery

• Lung Deposition

- Dose
- c/p Regional Deposition
 - Device, Formulation (excipients), API (physicochemical properties)
- Post-Deposition: Long pulmonary residence time controlled by either
 - Slow Dissolution rate
 - Low Permeability
 - Formulation (excipients), API (physicochemical properties, e.g. particle size....)

#PharmSci360

• Systemic PK

- Pronounced systemic clearance
- Low oral bioavailability API

Slide 4

Preclinical Models

Systemic Fate (CI, F, protein binding)

- In vitro/cell culture: Clearance/Protein binding/Metabolism
- Animal studies

Pulmonary Fate (Deposition and Post-deposition Events)

- In Vitro (dose, regional deposition; e.g. cascade impactor studies)
- Cell culture (permeability)
- Isolated perfused Lung (dissolution, permeability)
- Animal Studies (rat, dog, sheep, pig,)

Determination of Cl_{int}

Slide 6

Protein Binding

Slide 7

What "Events" are of Relevance for Pulmonary Fate ?

Modified from Olsson and Bäckman, Respiratory Drug delivery 2014

Slide 8

Lung Dose: in vitro

Lung deposition: in vitro/in vivo

Bo Olsson et al. 2013

Further validation necessary

Slide 10

Comparison of 3 Throats

2019 Pharm Sci 300

Slide 11

Regional Deposition: Cascade Impactor with Inhalation Flow

Bo Olsson et al. 2013

Slide 12

Patient Inhalation Profile

Slide 13

Comparison: PK vs Algebraic Deposition Model

Slide 14

Dissolution rate, Mucociliary Transport and Pulmonary Selectivity

- There is an optimal dissolution rate, around mucociliary clearance rate
- If drug is soluble and reaches receptor, the lower permeability (lung/blood) the better

Slide 15

Method: Dissolution Tests

Sample Preparation

- DUSA >>> full range of particles
- Cascade Impactor >>> defined stage(s)
- Anatomical Throat >>> ex-throat dose

Dissolution Test Systems

Systems Including diffusion across membrane (biomimetic)

- Transwell system/Franz cell
- Dissolve it[®] system (Gerde et al., ASSAY and Drug Develop. Technol., 2017) Systems without controlled membrane diffusion step
- USP II and IV

Applying the Dose (Inhalation)

Slide 17

Example: DPIs differing in lactose fines

- Fluticasone propionate (formulated UoB)
 - Same API, same API particle size,
 - different lactose fines

100 90 80 70 % Dissolved 60 ----- Average formulation 1 50 \rightarrow Average formulation 2 40 30 20 10 0 500 1000 1500 0 Time (mins)

FP DPI Formulations

Slide 18

Correlation between MDT and MAT

PharmScissforrelation between MDT and MAT seems to exist

201

Methods to Assess Pulmonary Pharmacokinetics

Slide 20

Isolated Perfused Luna

Slide 21

Pulmonary absorption – estimation of effective pulmonary permeability and tissue retention of ten drugs using an *ex vivo* rat model and computational analysis

IPL is able to quantify fate of inhaled drug with relatively high resolution

Slide 22

Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism

Lung Retention by Lysosomal Trapping of Inhaled Drugs Can Be Predicted In Vitro With Lung Slices

Erica Bäckström ^{1, 2, *}, Elin Boger ^{2, 3}, Anders Lundqvist ², Margareta Hammarlund-Udenaes¹, Markus Fridén^{1, 2}

¹ Translational PKPD Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden ² Respiratory, Inflammation and Autoimmunity Innovative Medicines, AstraZeneca R&D Gothenburg, Mölndal 431 83, Sweden ³ School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

Formoterol

b 100

10

Permeability/Cell Culture Models of the Air-Blood Barrier

- Cancer-derived cell lines: Calu-3, A549, NCI-H441, and NCI-H292
- Simian virus (SV)40 large T antigen-immortalized cell lines
 - 16HBE14o-
 - BEAS-2B

often present phenotypes different from the original cell type.

• Immortalized cell lines:

• NuLi-1, UNCN1T-3T, VA10, BCi-NS1.1, hAELVi close to native cells.

Published in Expert opinion on drug delivery 2009

Preclinical models for pulmonary drug delivery. Cláudia A Fernandes, Rita Vanbever

Slide 25

Combination of Dissolution/Permeability

Formulation C 100 Percent absorbed (%) 75 -NB+Fick's law —Pop PK 50 MAT = 0.27 h25 0 0.0 0.5 1.5 2.0 2.5 1.0 Time (hr)

Peripheral

Surface area: 60.2 *10^4 cm² **Permeability Peff: 13.8*10^-3 cm/h** (Eriksson) Relative Thickness of "airway": 1 **Fitted Parameter:**

2019 Pharms

Solubility: 0.73 μg/ml (Literature =0.5-1.4 μg/ml)

Central

Surface area: 1.00E+04 cm² Solubility: 0.73 µg/ml Relative Thickness of "central airway": 24 Fitted Parameter: Permeability: 0.7*10^-3 cm/h Relative permeability: 13.8/0.7=20

Slide 26

Guinea	 Easily sensitized and challenged 	
Pig	 Good model for airway disease 	
	 Immediate and late phase response 	
	 Model for COPD (cigarette smoke) 	
Rat	Low cost	
	• Easily sensitized and challenged (Sephadex)	
	 Model for COPD (cigarette smoke) 	
Mice	Low cost	
	 Easily sensitized and challenged 	
	Transgenic technology	
	 Model for COPD (cigarette smoke) 	
Cat	Distal Lung Anatomy and	
	Idiopathic bronchial disease similar to humans	
Dog	 Sensitive to allergens, shows atopy 	
	Eosinophils are present	
	 Long term change in pulmonary function 	
Equine	Heaves-airway disease with some hallmarks of human	
	asthma.	N
Sheep	Sensitive to allergens	IV O
	 Immediate response to inhaled allergens 	a
	 Shows Airway Hyper Responsiveness 	
2019	Pharm Sci 360 Slide 27	

MV Aun et al "Animal Models of Asthma: Utility and Limitations." Journal of Asthma and Allergy 10 (2017): 293–301

Slide 28

Ex-vivo Receptor Binding Studies

Free receptors (%) = $\frac{Specific binding in trt group}{Spcific binding in ctr group}$

Slide 29

Pulmonary Targeting In Rat Ex-vivo Receptor Binding Assay

Slide 30

Slide 31

Summary

- Array of preclinical methods is available to evaluate NCI for inhalation therapy
- Further improvements necessary to predict *regional deposition* with higher resolution
- Further improvements necessary to identify *pulmonary retainment*

Acknowledgments

FDA Contracts and Grants (GDUFA)

- HHSF223201110117A,
- HHSF223201610099C,
- HHSF223201300479A
- 1U01FD004950
- M. Hindle's group (VCU)
- J. Bulitta (UF)
- Graduate students (S. Bhagwat, M. Cheng, J. Shao)

Questions

This slide will stay visible during your Q&A. You may add your contact information, a web address, or other information that participants would need to follow-up on your talk.

Slide 34

Contact Information

Günther Hochhaus, PhD

University of Florida College of Pharmacy Gainesville FL, 32601 Hochhaus@ufl.edu

Slide 35