## Mathematical Models of Skin Penetration

Michael Heisig, Arne Nägel, Gabriel Wittum Goethe-Center for Scientific Computing Goethe-Universität Frankfurt

5th Galenus Workshop "The Advanced Use of Nanocarriers in Future Skin Drug Delivery" Charité Berlin November 16-18 2016





## **Scientific Computing in a Nutshell**

**Example:** Divide a cake into equal parts



### **Skin as a Barrier Membrane**



NCI Visuals Online, 2010



Key functions:

- Protection from environment
- Preventing dehydration
- Anti-microbial activity
- Thermal insulation
- Shock absorption





### **Modeling Skin Permeability**

A) Steady-state (QSPR) models

$$J_{max} = k_p c_{sat} = D/h * c_{sat}$$
 or  $k_p = (DK)/h$ 

B) Compartmental models

$$k_{1} \downarrow \uparrow k_{-1}$$

$$SC$$

$$k_{2} \downarrow \uparrow k_{-2}$$

$$V_{SC} \frac{d\langle C_{SC} \rangle}{dt} = k_{1}C_{v} - k_{-1}\langle C_{SC} \rangle - k_{2}\langle C_{SC} \rangle + k_{-2}\langle C_{ve} \rangle$$

$$V_{ve} \frac{d\langle C_{ve} \rangle}{dt} = k_{2}\langle C_{SC} \rangle - k_{-2}\langle C_{ve} \rangle - k_{3}\langle C_{ve} \rangle + k_{-3}C_{b}$$

C) Diffusion models

$$\frac{\partial c_i}{\partial t} + \frac{\partial}{\partial x} \left[ -D_i \frac{\partial c_i}{\partial x} \right] = 0, \text{ and } c_i = K_{i/j} c_j$$
(Further reading: Mitragotri et al, 2011; various in ADDR 65, 2013;  
A. Nägel, G-CSC, Goethe-University Frankfurt

## **Modeling Skin Permeability (2)**



### **Modeling Perspectives and Multiscale Character**



#### Descriptive approach (top-down):

- · Based on observations
- Apparent (fitted) parameters
- Simple description

### Mechanistic approach (*bottom-up*):

- Based on first-principles
- Function-related parameters
- Effects emerge from small to large scales



## **Physiology-based Modelling**

### First Principles:

• Conservation of mass (momentum, energy, ... )

### **Constitutive Relations:**

- Fick's law, (Hooke's law, ...)
- Based on observation/theroretical consideration

### **Features from Morphology:**

• Functional units are located at distinct positions, i.e., function is bound to morphology on microscopic level.

### **Considering Variability**

Addressing variability between/within species







 $D_i = \ldots$ 



### Physiology-based Modelling: Idealized Membranes for Stratum Corneum (SC)



### **Cell Template - Tetrakaidekahedra**





- TKD = Tetra-kai-deka-hedron = 4-and-10-faces (Polyhedron with 14 faces)
- Dates back to Kelvin (dense packings, foam cells): Almost optimal surface to volume ratio





## **Transport equations**

## (e.g. Risken, 1989)

• Starting from the Fokker-Planck equation for particle density ρ

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left[ -D(\vec{x})e^{-\beta \Phi(\vec{x})} \nabla e^{\beta \Phi(\vec{x})} \rho \right] = 0$$

with diffusion D, drift induced by force field F.

- Simplifies, assuming that (i) drift is induced by potential  $\Phi$ , and (ii) a steady-state equilibrium exist (i.e., fluctuation-dissipation-theorem holds), where  $\beta = (k_B T)^{-1}$
- Introducing partition coefficient  $K(\vec{x}) := e^{-\beta \Phi(\vec{x})}$ and a normalized concentration  $u(\vec{x},t) := e^{\beta \Phi(\vec{x})}\rho(\vec{x},t)$ , we obtain

$$\partial_t (Ku) + \nabla \cdot \left[ -\mathbb{D}K\nabla u \right] = 0$$





### **Microscopic Modelling of Stratum Corneum**



$$\partial_t (Ku) + \partial_x [-DK\partial_x u] = 0$$

Diffusion equation (e.g. piecewise constant coefficients)

### Morphology + Function = Effect



Corneocyte sponge effect





## Example: Elongated Tetrakaidekahedra affect SC Diffusivity



### Lateral (along cells) →

### **Results:**

- Diagonal diffusion tensor
- Separate coefficients for lateral/transversal direction
- Dependent on effective diffusivity (sigmoidal)
- 4 parameters:
   D<sub>LIP</sub>, D<sub>COR</sub>, K<sub>COR</sub>, K<sub>LIP</sub>

Transversal (across cells) ↓



$$\mathbb{D} = D_{lip} \begin{pmatrix} \alpha_{11}(\xi) & 0 & 0\\ 0 & \alpha_{11}(\xi) & 0\\ 0 & 0 & \alpha_{33}(\xi) \end{pmatrix}$$

$$\xi = \frac{D_{COR}}{D_{LIP}} K_{\rm COR/LIP}$$

Virtual Diffusion Cell (Hansen et al., 2008; ...)





## Virtual Diffusion Cell (Infinite Dose)





<u>Caffeine</u> (hydrophilic)

Correction of D<sub>COR</sub>!

38 Ein somfalte





Finite dose extension: (Selzer et al., 2012; ...)

# Existing models rely on trans-bilayer Correction (or: small corneocyte diffusivity)

| Substance       | D <sub>LIP</sub> | $D_{COR}$ | <b>k</b> <sub>trans</sub> | $D_{aq}$             | Reference           |
|-----------------|------------------|-----------|---------------------------|----------------------|---------------------|
|                 | (cm²/s)          | (cm²/s)   | (cm/s)                    | (cm <sup>2</sup> /s) |                     |
| Ethanol         | 8,50E-07         | 1,20E-05  | 8,90E-05                  |                      | Wang et al., 2006   |
| Nicotinamide    | 9,20E-08         | 7,40E-06  | 5,90E-06                  |                      | Wang et al., 2006   |
| Testosterone    | 1,30E-08         | 3,50E-06  | 4,30E-07                  |                      | Wang et al., 2006   |
| Caffeine        | 5,83E-08         | 4,72E-13  |                           |                      | Naegel et al., 2008 |
| Flufenamic Acid | 3,06E-08         | 1,42E-12  |                           |                      | Naegel et al., 2008 |
| 4-Cyanophenol   | 3,60E-07         | 2,90E-11  |                           | 9,10E-06             | Lian et al., 2010   |

- Some parameters fitted/adjusted
- Corresponds to anisotropic diffusion in the lipids!





## **Detour: Is this relevant for Numerics?**





(with A. Vogel, S. Reiter, G. Wittum)

Diffusion through idealized SC w/ jumping coefficients:  $D_{LIP} = 1, D_{COR} = 0.001$ 

Singularities in the corners



➔ Refine the mesh only in this area

Reduce number of degrees of freedom



# Uniform vs. Adaptive refinement (steady state problem)

(with A. Vogel, S. Reiter, G. Wittum, in preparation)



 1K processes vs. 64 K processes (approx. identical wall clock time on JuQueen, JSC Jülich)



Larger gain of accuracy per dof w/ adaptivity (still counting...)



Error proportional to element diameter h:

H1-Error ~  $O(h^{1/2})$  and L2-Error ~ O(h)





### Subscale model for SC lipids - Idea



Iwai et al., JID, 2012

- The discretization reaches the level of molecular resolution
- Fokker-Planck equation provides subscale model





### Subscale model for SC lipids - Homogenization

### a) Lateral Diffusion ->



0.1

u=0

$$\overline{D}_{||} = \frac{1}{L} \int_0^L D(x) \, dx$$
  
= 0.6 \* 1 + 0.4 \* 0.1  
= 0.64

Anisotropic diffusion tensor for lipids:  $\mathbb{D} =$ 

$$\begin{pmatrix} D_{||} & 0 \\ 0 & \overline{D}_{\perp} \end{pmatrix}$$

$$(\overline{D}_{\perp})^{-1} = \frac{1}{L} \int_0^L D(x)^{-1} dx$$
  
=  $(0.6 * 1 + 0.4 * 10)^{-1}$   
=  $(4.6)^{-1} \approx 0.21$ 

## **Anisotropic Lipid Diffusion - Example**



Model yields large gradients in Lipid layer:

## Resolved using adaptive mesh refinement:







## Anisotropic Lipid Diffusion – Rate Limiting Step (with J. Nitsche, unpublished)

**Effective permeability of the barrier:** 



## How to determine D<sub>LIP-X</sub>?

- Free energy profiles from MD simulation (Bemporad et al., 2004; Notman & Anwar, 2013)
- Homogenization of Fokker-Planck eqn.

## Alternative:

- Experimental data for artificial bilayers, e.g., Xiang,Anderson (1994,...),
- Approximation (Nitsche and Kasting, 2013) based on K<sub>o/w</sub>, MW, A, B, S, E ,V

## **Reconstructed Morphology**

Also see Poster #23: E. Sontak w/ A. Holmes, H. Studier, M. Pastore, J. Grice, M. Roberts, J. Brandner





## **Outlook: From Skin Sample to Simulations**

**Input:** Greyscale TIFF-stack

## **Output:** Geometry for Computation (cell membrane + nuclei)



Raw data (H. Studier, A. Holmes, Adelaide)

#### Steps:

- Pre-process

   (anisotropic filter, enhancing light and contrast)
- 2. Track spherical cell nuclei
- 3. Membrane reconstruction



Mesh for Computation (E. Sontak, G-CSC)





### Example



### **Tracking: Comparison**





- Sample size: 101 x 101 x 37 um<sup>3</sup>
- Found ~600 nuclei (incl. some duplicates and false-positives)
- Nuclei represented as ellipsoids (with different principal axes)
- Large circle → center
- z position color-coded

## **Preliminary analysis**



### **Reconstructing Cell membranes**

For each node p, the **Voronoi region** B(p) is the **set of points** that are **closer to** p **than to any other**.



Ongoing work for subscale Model: Talk by Fen Wattome (Kakseine)

➔ Define cells by Voronoi region B(c<sub>n</sub>), where c<sub>n</sub> is the center of nucleus n.

Cell  $B(c_e)$ 



Ellipsoid e

### Summary

- The skin is an organ with an inherent **multi-scale structure**;
- **Properties emerge** from the micro-scale to the macro-scale, e.g. influence of cell shape, lipid anisotropy
- Physiology-based bottom-up models provide accurate infomation al lower computational complexity
- In-silico tools valuable for hypothesis testing
- This allows linking theoretical findings with experiments
- Take home: Give it a try!



