Drug Permeation through Skin: A Challenging Application for High Performance Scientific Computing

Modeling Natural Barriers September 28 - October 1 2015 Bad Wildbad

Michael Heisig, Arne Nägel, Gabriel Wittum G-CSC, Goethe-University, Frankfurt am Main

Drug Permeation through Skin: A Challenging Application also for High Performance Scientific Computing

Modeling Natural Barriers September 28 - October 1 2015 Bad Wildbad

Michael Heisig, Arne Nägel, Gabriel Wittum G-CSC, Goethe-University, Frankfurt am Main

Motivation

1) Scientific motivation: We have learnt so much about structure...

Courtesy of Roger Wepf, ETH

38

... why not use this information?

Personal motivation: Real interdisciplinary research is, when two fields interact, learn from each other and then advance mutually

Multiscale Character and Modelling Perspectives:

Mechanistic approach (bottom-up):

- Effects emerge from small to large scales
- Based on first-principles
- Function-related parameters

Descriptive approach (*top-down***)**:

- Simple description (e.g. linearization,..)
- Based on observations
- Apparent (fitted) parameters

Trade-off problem:

Need to balance accuracy and simplicity of description!

Different Modeling Approaches

Motivation: Microscopic Modelling of Stratum Corneum

$$\partial_t (Ku) + \partial_x [-DK\partial_x u] = 0$$

Diffusion equation (e.g. piecewise constant coefficients)

Effect

Morphology + Function =

Corneocyte sponge effect

Outline

- 1. Introduction
- 2. Transport in Stratum Corneum
- 3. Transport in the viable Epidermis
- 4. Mechanical Properties and Swelling

Using Tetrakaidekahedra as a Cell Template

- TKD = Polyhedron with 14 faces
- Goes back to Keppler (dense packings, foam cells)
- Configuration [™], Corneocyte cell C, lipid matrix L →

Homogenization

Idea: Obtain information about macro scale process from micro scale process

Homogenization – Example:

a) Lateral Diffusion 🗲

Periodic

$$\overline{D}_{||} = \frac{1}{L} \int_0^L D(x) \, dx$$

= 0.6 * 1 + 0.4 * 0.1
= 0.64

Results in **anisotropic** \mathbb{D} diffusion tensor:

$$\begin{pmatrix} D_{||} & 0 \\ 0 & \overline{D}_{\perp} \end{pmatrix}$$

$$(\overline{D}_{\perp})^{-1} = \frac{1}{L} \int_0^L D(x)^{-1} dx$$

= $(0.6 * 1 + 0.4 * 10)^{-1}$
= $(4.6)^{-1} \approx 0.21$

Homogenization applied to

Method of Asymptotic Expansion (e.g., Bensoussan, Lions, Papanicolaou, 1978)

- Requires solution of d=3 cell problems
- Simple for diffusion problems

For Cuboid model: Rim, Pinsky, van Osdol, J Membrane Sci, 2007

For TKD: Muha, N', Stichel, Grillo, Heisig, Wittum, J. Membrane Sci, 2010

Homogenization of Tetrakaidekahedra

Lateral ->

Transversal Ψ

Results:

- Diagonal diffusion tensor
- Separate coefficients for lateral/transversal direction
- Dependent on effective diffusivity (sigmoidal)

$$\mathbb{D} = D_{lip} \begin{pmatrix} \alpha_{11}(\xi) & 0 & 0\\ 0 & \alpha_{11}(\xi) & 0\\ 0 & 0 & \alpha_{33}(\xi) \end{pmatrix}$$

$$\xi = \frac{D_{COR}}{D_{LIP}} K_{\rm COR/LIP}$$

Validity of the approximation

...

Transport in Stratum Corneum

Joint work with Andreas Vogel, Sebastian Reiter

Example: Computation for a Cuboid Membrane

Diffusion through a biphasic brick-andmortar medium (3D) w/ jumping coefficients:

 $D_{LIP} = 1,$ $D_{COR} = 0.001,$ $K_{LIP} = K_{COR} = 1$

Computational effort

p	L	DoF	$n_{ m gmg}$
16	6	$290,\!421$	25
128	7	$2,\!271,\!049$	27
1024	8	$17,\!961,\!489$	29
8192	9	$142,\!869,\!025$	29
65536	10	$1,\!139,\!670,\!081$	29

Kernel	Model for time [s]
Solve	$19.75 + 0.32 \cdot \log_2 p$
Init	$8.17 + 0.002 \cdot \log_2^2 p$
Assemble	1.78

A. Nägel, G-CSC, Goethe-University Frankfurt

Reducing Computational Effort by Adaptive Refinement (Verfürth, Zienkiewicz, ...)

Singularities in the corners

- \rightarrow Refine the mesh only in this area
- ➔ Reduce number of degrees of freedom

Uniform vs. Adaptive refinement (steady state problem)

64 K processes vs. 1K processes

 (approx. identical wall clock time on JuQueen, JSC Jülich)

Larger gain of accuracy per dof w/ adaptivity (still counting...)

Order of Convergence

Error proportional to element diameter h:

H1-Error ~ $O(h^{1/2})$ and L2-Error ~ O(h)

Subscale model for stratum corneum lipids

Iwai et al., JID, 2012

- The discretization reaches the level of molecular resolution
- Need a new model (describing morphology+function)

Anisotropic diffusion in lipid bilayers - Two options:

- Constitutive relations/ measurements
- DLAT= 100*DTRANs (maybe 10000)

Permeability of Fluid-Phase Phospholipid Bilayers: Assessment and Useful Correlations for Permeability Screening and Other Applications

JOHANNES M. NITSCHE,¹ GERALD B. KASTING²

¹Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200

² James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0004

Received 1 May 2012; revised 20 December 2012; accepted 18 January 2013 Published online 18 April 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jps.23471

 Molecular Dynamics (Yesterday afternoon)

Contents lists available at SciVerse ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr

Advanced Drug Delivery Reviews 65 (2013) 237-250

Breaching the skin barrier — Insights from molecular simulation of model membranes ${}^{\bigstar}$

Rebecca Notman^a, Jamshed Anwar^{b,*}

^a Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
^b Computational Biophysics Laboratory, Institute of Life Sciences Research, University of Bradford, BD7 1DP, UK

Transport in the viable epidermis

Joint work with Johanna Brandner, Christian Börnchen@UKE, Hamburg Markus Knodel, Rebecca Wittum @ G-CSC

Cellular scale model: Nitsche and Kasting, Biophys J, 2013

- Transport in cytosol, lipid membrane, intracellular space
- Gap Junction/Tight Junctions
- Effective Diffusivity (z-direction)

Transient simulation for viable epidermis (R. Wittum)

 Non-homogenized 3D model following Nitsche and Kasting, Biophys J, 2013

Slow diffusion in cytosol

Open question: Tight Junction on real 3D structures

- Obtain image data (stacks of microscopy data)
- 2. Reconstruct
 - a. Cell Nuclei
 - b. Cell Membranes
- 3. Generate Volume meshes
- 4. Run simulations

Images courtesy of C. Börnchen and J. Brandner (UKE Hamburg)

- Obtain image data (stacks of microscopy data)
- 2. Reconstruct
 - a. Cell Nuclei
 - b. Cell Membranes
- 3. Generate Volume meshes
- 4. Run simulations

- Obtain image data (stacks of microscopy data)
- 2. Reconstruct
 - a. Cell Nuclei
 - b. Cell Membranes
- 3. Generate Volume meshes
- 4. Run simulations

Comparison: Reconstruction vs. Image

- Obtain image data (stacks of microscopy data)
- 2. Reconstruct
 - a. Cell Nuclei
 - b. Cell Membranes (Voronoi diagram)
- 3. Generate Volume meshes
- 4. Run simulations (w/ cellular scale model)

Optimization as a Tool for Cell Reconstruction:

Comput Visual Sci DOI 10.1007/s00791-015-0248-9

Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes

Arne Nägel² · Volker Schulz¹ · Martin Siebenborn¹ · Gabriel Wittum²

Optimize a shape w.r.t. an objective (imaging data)

Scalability

Parabolic problems (VOLUME)

Weak Scalability

(more work, more workers)

▲ Gradient (SURFACE)

[★]Deformation (VOLUME)

Objective (VOLUME)

×Laplace-Beltrami (SURFACE)

Strong Scalability

(constant work, more workers)

Mechanical Properties and Swelling

Motivation: Swelling

T. Richter et al, Skin Pharmacology and Physiology, 2004

Modelling swelling

A.) Static model

- Based on geometric considerations
- Omitting some functional details

B.) Dynamic Model:

Nomentum of mixture :	$ abla [\sigma - pI] - F \Phi_f(z_0 c_0 + \sum z_i c_i) abla \Psi = 0$
Mass of mixture :	$\partial_t (abla \cdot ec u) + abla \cdot [-\Phi_f \kappa (abla p + rac{F}{RT} (\sum_i^i z_i c_i) abla \Psi)] = 0$
Mass of component i :	$\partial_t (\Phi_f c_i) + \nabla \cdot \left[-\Phi_f D_i (\nabla c_i + c_i \frac{z_i F}{RT} \nabla \Psi) \right] = 0$
Charges :	$ abla \cdot [-\epsilon\epsilon_0 abla \Psi] = F(z_0 c_0 + \sum z_i c_i)$
	i

- Based considerations from physics
- Continuity of mass, momentum etc

Static Swelling:

We create a configuration $\mathcal{C}=(C,L)$ from $\mathcal{C}_0=(C_0,L_0)$ as follows

1. The corneocyte volume decreases/increases by α :

$$V(C) = \alpha V(C_0)$$

2. The volume of the lipid bilayer remains constant:

 $V(L) = V(L_0)$

3. The area of the cornified envelope remains constant:

 $A(\partial L \cap \partial C) = A(\partial L_0 \cap \partial C_0)$

4. We have an evolution:

$$\dot{\alpha}(t) = f(\alpha), \alpha(0) = 1$$

Static Swelling Results

Static Swelling: Results

Coupling Flow and Mechanics: Modelling Microneedle Injection

Deformation of a fluid filled medium is described by quasi-static Biot system (Biot, 1941) by displacement \mathbf{u} , hydrostatic pressure p:

$$\nabla \cdot [\boldsymbol{\sigma} - \alpha p \mathbf{I}] = \mathbf{r}$$
$$(\Phi p + \alpha \nabla \cdot \mathbf{u})_t + \nabla \cdot [-\kappa \nabla p] = q$$

Mechanical stresses given by

$$\boldsymbol{\sigma} := \lambda \operatorname{tr}(\boldsymbol{\epsilon})\boldsymbol{I} + 2\mu \boldsymbol{\epsilon},$$

$$\epsilon_{ij} := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} \right)$$

Components of a hydrogel

Swelling Model for Hydrogels (e.g., Lai et al, 1991; Huyghe & Janssen, 1997, ...):

Two phases:

- Solid phase: w/ network of macromolecules (polymer)
- Fluid phase: w/ water and solvents (water+ions)

Hydrogel Swelling Model (e.g., Lai et al, 1991; Huyghe & Janssen, 1997, ...):

Featuring 3+n phases:

$$\begin{array}{lll} \text{Momentum of mixture}: & \nabla[\sigma - pI] - F\Phi_f(: & \sum_i z_i c_i) \nabla \Psi = 0 \\ \\ \text{Mass of mixture}: & \partial_t (\nabla \cdot \vec{u}) + \nabla \cdot [-\Phi_f \kappa (\nabla p + \frac{F}{RT} (\sum_i z_i c_i) \nabla \Psi)] = 0 \\ \\ \text{Mass of component } i: & \partial_t (\Phi_f c_i) + \nabla \cdot [-\Phi_f D_i (\nabla c_i + c_i \frac{z_i F}{RT} \nabla \Psi)] = 0 \\ \\ \text{Charges}: & \nabla \cdot [-\epsilon \epsilon_0 \nabla \Psi] = F(z_0 c_0 + \sum_i z_i c_i) \end{array}$$

- Deformation of solid phase u
- Pressure of fluid phase p
- Fixed (positive) charges, n mobile (ionic) substances,
- Electric potential (w/ assumption of electro-neutrality)

2

Dynamic Swelling Model: Quantitative Results

→Innermost cells show strongest swelling
 (e,g., Richter, 2004)
 →Welcome: Discussion on material properties
 (mechanics), driving forces, charge distribution, ...

Summary

- The skin is an organ with an inherent multi-scale structure
- A bottom up approach is feasible: Properties observed macroscopically likely to depend on microscopic features.
- Large number of cells can be addressed by supercomputing (only?). This drives development of new scalable algorithms.
- The work in the field advances both (i) our understanding of the skin as well as (ii) mathematical methods.

Acknowledgement

Sebastian Reiter Andreas Vogel Markus Knodel

Jochen Seitz Martin Scherer Torbjörn Klatt Rebecca Wittum Christian Börnchen Johanna Brandner (UKE Hamburg)

Volker Schulz Martin Siebenborn (U Trier)

Funding:

