Predicting, measuring and optimising Introduction drug delivery to the skin Drug delivery into and through skin for dermatological therapy, • treatment of local, subcutaneous inflammation, or **Richard H. Guy** alleviation of systemic disease, University of Bath continues to represent a major challenge. · While skin barrier function is better understood, and novel AGAH 6th Dermatological technologies are in development... Product Workshop topical bioavailability remains poor and very difficult to measure. London - June, 2015 Acknowledgements:

Rodrigo Contreras-Rojas, Brian Saar, Sunney Xie, Natalie Belsey, Wing Chiu, Kit Frederiksen, Simon Vanstone, Julian Moger, Natalie Garrett, Gareth Price, Sergey Gordeev, Karsten Petersen, Begoña Delgado-Charro, Annette Bunge, Audra Stinchcomb, Leo Pharma A/S, GSK-Stiefel, U.S. FDA (1U01FD004947-01).

Dermatopharmacokinetics (DPK) as a test for topical bioequivalence

US Food & Drug Administration (FDA) Draft Guidance issued June. 1998 Withdrawn May, 2002

> Issued July, 2003 • Extended November, 2006

Topical bioequivalence Japanese Division of Drugs

- Guideline for bioequivalence studies of generic products for topical use
- http://www.nihs.go.jp/drug/be-guide%28e%29/Topical_BE-E.pdf
- July 7, 2003
- Dermatopharmacokinetic (DPK) study is acceptable if:
- Site of action is either in or below stratum corneum (SC)
- Drug product does not damage SC
- Same concentration of active ingredient (even if in different formulations)
- Measure at 1 time: steady state after 1 application
- Given that amount of SC stripped by each tape is variable:
 - Determine amount of SC collected and use average drug concentration (mg/g) instead of drug amount (mg/cm²)
 - Or, calculate average concentration from C versus x/L approach

DPK of maxacalcitol from ointment and lotion

- Maxacalcitol is 1α,25-dihydroxy-22-oxavitamin D₃
- Treatment of psoriasis
- Compare lotion (generic) to Oxarol ointment (RLD)
- Amount of drug is 25 $\mu g/g$ in both ointment and lotion
- Remove SC until TEWL > 50 g/m²-h or 20 tape strips •
 - 2. Pivotal assessing bioequivale

1. Pilot to assess time to reach steady state for lotion and ointment

DPK - current situation?

- Improved tape stripping methods can reliably and efficiently assess BE of topical dermatological products
 - Pharmacokinetic (multiple time points) analysis is unnecessary
 - Will FDA ever accept tape stripping to assess BE?
- Remaining questions, clarifications and potential improvements
 What metric should be assessed?
 - <u>Amount</u>, because adjusting drug quantity by SC mass collected does not reduce variability
 - Determination of SC mass collected and SC thickness not required
 - Eliminates inter-subject variability in SC thickness (compare within subject)
 - <u>Applicability if target tissue is not the SC?</u>
 - What uptake time? How many applications? (Wagner, PQRI-2013)
 Cleaning excess formulation? Inclusion (or not) of first 2 tape-strips? Yes!
 Wiedersberg et al., Eur J Pharm Blopharm, 2009

DPK – what if stratum corneum is not the target?

- Drug clearance rate is proportional to rate of drug delivery to tissues below SC
- Assessing BE drug delivery to tissues below SC
- Measure amount of drug after clearance
- Compare to amount of drug at steady-state before clearance
 Clearance-to-uptake ratio should be an appropriate metric for assessing delivery
 to tissues below SC

Topical BA/BE:

FDA project (1U01FD004947-01) update and perspectives; application of novel techniques to improve formulations

1. FDA project

- For project
 Betamethasone valerate: DPK on inequivalent formulations ex vivo correlate
 extremely well with published in vivo (human) data. IVRT does not.
 Econazole: DPK on uptake of equivalent formulations correlates again with
 published in vivo (human) data. IVRT of 3 formulations are very similar.
- published in vivo (human) data. IVRT of 3 formulations are very similar.
 Human PK and DPK studies in man comparing different topical diclofenac and acyclovir formulations in progress. To be correlated with in vitro and IVRT.

2. Related research

- Application of novel technology (Raman scattering microscopy) to better understand formulation behaviour post-application to the skin.
- Controlling this "metamorphosis" to guide improved formulation conception and development.

Fluospheres on porated skin

- Thermal ablation: small pores/channels (~ 300 µm long, 100 µm deep) created by short bursts of heat.
- Poration device utilizes a microarray of metal filaments.
- Skin auto-fluorescence is heightened around pores.
- Particles have an affinity for the pore surfaces.
- Signal intensity profiles at surface, mid-pore and bottom of 'trench'.

N. Belsey et al., J. Control. Release 174 (2014) 37-42

Deuterated nanoparticles: Stimulated Raman scattering (SRS)

- Б Собото собото
 - N. Belsey et al., J. Control. Release 174 (2014) 37-42

- 40 nm diameter deuterated methyl methacrylate particles
 CARS (red) CH₂ stretching contrast at 2855 cm⁻¹
- SRS (blue) CD contrast; fluorescein
- Images prepared using 'colour merge' and 'volume viewer' (ImageJ).

H. Garvie-Cook, J.F. Stone, F. Yu, R.H. Guy & S.N. Gordeev, unpublished results.

Controlled skin poration with femtosecond laser pulses • Ytterbium doped fiber laser (Fianium), wavelength = 1064 nm, pulse duration = 5 ps, repetition rate = 20. • Pulses compressed and frequency doubled in Li triborate crystal. • Pulses compressed and frequency doubled in Li triborate crystal. • Resulting laser beam had wavelength = 532 nm and pulse duration = ~300 fs. Camera shutter used to expose skin to laser for 1 s. H. Garvie-Cook, J.F. Stone, F. Yu, R.H. Guy & S.N. Gordeev, unpublished results.

Laser poration of the nail

Cross-sections of inked nails, 130 mW power for 1 s. Reproducible pore formation. 'Colateral' damage apparent.

Decreasing exposure time reduces depth of pores formed. 'Colateral' damage decreased.

Conclusions

- Novel, non-invasive imaging techniques may (semi-) quantify drug delivery into and through skin.
- "metamorphosis" of formulations post-application
 potential to improve topical formulations and optimize drug bioavailability.
- "Large" molecules and objects cannot penetrate an intact skin barrier.
- nanoparticles as sustained release reservoirs on skin surface, in hair follicles?
- skin poration approaches a way forward?
 what about the "gold standard" of a needle + syringe?

