

Translating Scientific Advances to Regulatory Methods Assessment of Cutaneous Pharmacokinetics

Innovations in Dermatological Sciences Conference September 29, 2022

Priyanka Ghosh, PhD

Office of Research and Standards (ORS), Office of Generic Drugs (OGD) CDER | U.S. FDA

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Skin Anatomy

Potential of Cutaneous Pharmacokinetics (PK)

Can we develop **cutaneous PK** based methods to quantify drugs in **"real time"** at or near the **site of action** in the skin?

www.fda.gov

Saar Brian G., Contreras-Rojas L. Rodrigo, Xie X. Sunney, and Guy Richard H. Imaging Drug Delivery to Skin with Stimulated Raman Scattering Microscopy Molecular Pharmaceutics 2011 8 (3), 969-975

Cutaneous PK Techniques

FDA

• Epidermal PK

- Tapestripping "Dermatopharmacokinetics" (DPK)
- In vitro Permeation Testing (IVPT)
- Epidermal and/or Dermal Pharmacokinetic Tomography e.g., Raman based methods

Dermal PK

Dermal Open Flow Microperfusion (dOFM)
Dermal Microdialysis (dMD)

Epidermal PK

www.fda.gov

Challenges with Imaging-based tools Examples of Historical limitations

- Challenges with detection of molecule in the skin
- Challenges related to signal attenuation within the skin
- Challenges related to utility of tool as a semi-quantitative evaluation technique
- Challenges associated with limited utility, applicable for molecules with unique Raman signal
- Challenges related to data collection and data analysis of spectroscopic data
- Development of validation strategies for utilization of method in a regulatory setting

Prof. Richard Guy FDA Award U01-FD006533

Evaluation of Epidermal PK

Saturated solution (50:50 Propylene glycol : water) 25% Saturated solution (50:50 Propylene glycol : water)

FDA

Evaluation of Epidermal PK

Within Lipi	id-Rich	Skin	Regions
-------------	---------	------	---------

Within Lipid-Poor Skin Regions

Reference product: Tazorac[®] cream (x2) Test product: Generic tazarotene cream Alternate formulation: Tazorac[®] gel Alternate formulation: Lab made tazarotene solution in PEG

Number of skin samples & regions of interest (ROIs)	4 donors 4 replicates per formulation 4 ROIs per skin sample
Depth stack	Step size: 8 $\mu m;$ final depth at 64 μm
Study duration	~6.5 hours of imaging (15 cycles)
Skin uptake conditions	Finite dose (5 µL); Occlusive; 32°C

www.fda.gov

Prof. Conor Evans FDA Award U01-FD006698

Current State and Next Steps

FDA

- Detection of molecule in the skin
 - We can detect certain active ingredients in formulations; however, we are exploring advanced techniques e.g., Sparse Spectral Sampling Stimulated Raman Scattering
- Utility of tool as a semi-quantitative evaluation technique
 - Preliminary in vitro data with multiple molecules suggests that comparison of cutaneous PK is feasible using the technique
- Data collection and data analysis of spectroscopic data
 - Multiple approaches including Deep Learning utilized to automate data collection and processing
- Development of validation strategies for utilization of method in a regulatory setting
 - Currently we are utilizing available data to identify relevant parameters for assessment of cutaneous PK data

Future scope of work would include development of method validation strategies
 www.fda.gov

Dermal PK

 Microdialysis (dMD) and Open Flow Microperfusion (dOFM) directly measure the in vivo rate and extent of drug bioavailability at/near the site of action in the skin.

www.fda.gov

Dermal PK

Examples of Historical limitations

- Analytical limitations/High variability in the data
- Study controls: Application site, dose, application technique, probe depth, barrier integrity, flow rates
- Development of data analysis strategies
- Development method validation strategies

www.fda.gov

Dermal PK - dOFM

Bodenlenz M, et al. Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence. Clin Pharmacokinet. 2017 Jan;56(1):91-98.

Dermal PK - dOFM

R: EMLA[®] (lidocaine; prilocaine) topical cream, 2.5%; 2.5 %
 T_{generic} : generic lidocaine; prilocaine cream, 2.5%; 2.5%
 T_{non-equ} : Oraqix[®] (lidocaine; prilocaine) dental gel, 2.5%; 2.5%

	PK endpoint	Drug	95% upper confidence bound	BE - criterion satisfied	Result	
T _{gen} vs. R ₁	AUC ₀₋₁₂	lideoging	-0.053	Yes		
	C _{MAX}	lidocalitie	-0.055	Yes	The generic cream is	
	AUC ₀₋₁₂	prilogging	-0.051	Yes	reference cream.	
	C _{MAX}	phiocame	-0.043	Yes		
T _{non-equ} vs. R ₂	AUC ₀₋₁₂	lideocino	0.330	No		
	C _{MAX}	lidocalite	0.623	No	The gel is not	
	AUC ₀₋₁₂	prilogging	0.703	No	reference cream.	
	C _{MAX}	priocaine	1.174	No		

Dermal PK - Microdialysis

Cutaneous PK – Data Analysis

Dose vs Cream 10 mg/cm ²	Point Estimate			Bootstrap (n=1000)				
	Percent conc profile		Percent AUC profile		Percent conc profile		Percent AUC profile	
	Lidocaine	Prilocaine	Lidocaine	Prilocaine	Lidocaine	Prilocaine	Lidocaine	Prilocaine
f ₁								
Cream 5 mg/cm ² (n=12)	65.5	63.4	64.6	63.1	63.1 (48.7 – 74.2)	61.3 (47.3 – 72.4)	62.1 (47.1 – 73.0)	61.0 (47.3 – 71.8
Cream 15 mg/cm ² (n=12)	30.5	24.1	14.6	13.3	39.4 (21.6 – 73.4)	33.2 (17.4 – 62.2)	30.3 (11.4 - 68.0)	25.7 (10.1 - 56.4
Gel 10 mg/cm ² (n=6)	70.2	76.0	69.4	75.7	67.2 (49.0 - 80.6)	74.2 (61.9 – 83.0)	65.7 (43.4 - 80.6)	73.5 (60.0 - 84.2
f ₂								
Cream 5 mg/cm ² (n=12)	15.6	15.7	27.6	29.8	16.8 (14.8 – 19.9)	16.6 (13.9 – 22.7)	29.0 (23.6 - 37.5)	31.0 (25.8 - 38.4
Cream 15 mg/cm ² (n=12)	39.6	38.8	60.7	65.7	35.2 (27.9 – 42.3)	35.2 (27.2 – 43.9)	48.7 (33.1 – 65.1)	53.7 (38.2 – 70.2
Gel 10 mg/cm ² (n=6)	15.5	13.0	25.3	24.6	17.0 (14.0 - 22.3)	13.6 (11.0 - 18.6)	27.3 (20.9 - 38.2)	25.5 (21.6 - 31.1

For the purpose of this study, cutaneous PK profiles were considered to be discriminated if $f_1 > 15$ or $f_2 < 50$ and with bootstrap analysis when the 90% confidence interval (CI) for $f_1 > 15$ or for $f_2 < 50$

www.fda.gov

Current State and Next Steps

- Analytical limitations/High variability in the data
 - We can reliably detect and compare active ingredients(s) in the dermis following topical application, approximately 20 subjects were used for the bioequivalence (BE) assessment
- Study controls: Application site, dose, application technique, probe depth, barrier integrity, flow rates
 - Relevant study controls have been identified and implemented
- Development of validation strategies for utilization of method in a regulatory setting
 - Currently we are utilizing available data to identify relevant parameters for assessment of cutaneous PK data
 - Equipment and method validation strategies
 - How we can use dermal PK data in conjunction with other available information/strategies (e.g., formulation information, modeling and simulation-based approaches) to support generic product development

- -Access to the techniques
- -Expertise
- -Cost

-Availability of standardized methodologies

Summary

- Cutaneous PK techniques can be utilized to develop efficient strategies for evaluation of bioavailability for topical products applied to the skin
- Epidermal PK based methods appear to be promising, however they are currently in the early stages of development
- dOFM and dMD methods have the potential to support a demonstration of BE when the proposed method is optimized and controlled to be adequately discriminating and reproducible
- Goal of the Generic Drug User Fee Amendments (GDUFA)-funded research program is to develop efficient BE approaches for complex generic drug products including topical products applied to the skin

Acknowledgements

U.S. Food & Drug Administration

- Sam Raney, PhD
- Tannaz Ramezanli, PharmD, PhD
- Sagar Shukla, PharmD, PhD
- Ying Jiang, PhD
- Eleftheria Tsakalozou, PhD
- Markham Luke, MD PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for research projects was made possible, in part, by the U.S. FDA through:

GDUFA Award U01FD004946

GDUFA Award U01FD005861

• Dr. Frank Sinner, Joanneum Research

GDUFA Award U01-FD005226

- Dr. Michael Roberts, University of South Australia GDUFA Award U01FD005862 GDUFA Award U01FD006930
- Dr. Grazia Stagni, Long Island University GDUFA Award U01FD006533
- **Dr. Richard Guy, University of Bath** GDUFA Award U01FD006698
- Dr. Conor Lee Evans at Massachusetts General Hospital/Harvard Medical School

21

Priyanka Ghosh, PhD Priyanka.ghosh@fda.hhs.gov