

Towards building a dermal model for BE assessment: The role of drug product characterization & performance data

Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches Virtual Public Workshop September 30, 2021

Priyanka Ghosh, Ph.D.

Acting Team Lead/ Co-chair of the Bioequivalence Standards for Topicals Committee Division of Therapeutic Performance (DTP), Office of Research and Standards (ORS) Office of Generic Drugs (OGD) CDER | U.S. FDA

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Learning Objectives

- Understand the complexity of topical dermatological products
- Discuss bioequivalence (BE) recommendations for topical dermatological products
- Discuss how drug product characterization data and drug product performance data can be utilized to develop and validate models for evaluation of BE

What are Topical Products?

FDA

Potential ways for establishing BE for complex topicals:

- Comparative clinical endpoint BE studies
 - Clinical endpoint (CE)
 - Pharmacodynamic endpoint (e.g., vasoconstrictor (VC) studies)
- Efficient characterization-based BE studies (e.g., in vitro)
 - in vitro
 - in vivo pharmacokinetic (PK) studies

A Modular and Scalable Approach to BE Evaluation

- Sameness of inactive ingredient components and quantitative composition, e.g., qualitative (Q1) and quantitative (Q2) sameness
- Q3 (Physical & Structural Characterization) as relevant to the nature of the product
- **IVRT** (In Vitro Release Test)
- IVPT (In Vitro Permeation Test) or another bio-relevant assay may be appropriate for some products
- In vivo systemic **PK** studies may be appropriate for some products

Identification of Relevant Q3

Is the Drug Substance **Dissolved** *in the Formulation?*

- Isomers of the drug
- pKa(s) of the drug
- pH of the formulation

Is the Drug Substance **Suspended** *in the Formulation?*

In addition to the potential failure modes identified on the left....

- Polymorphic forms of the drug
- Particle size distribution of the drug (and crystalline habit)

Identification of Relevant Q3

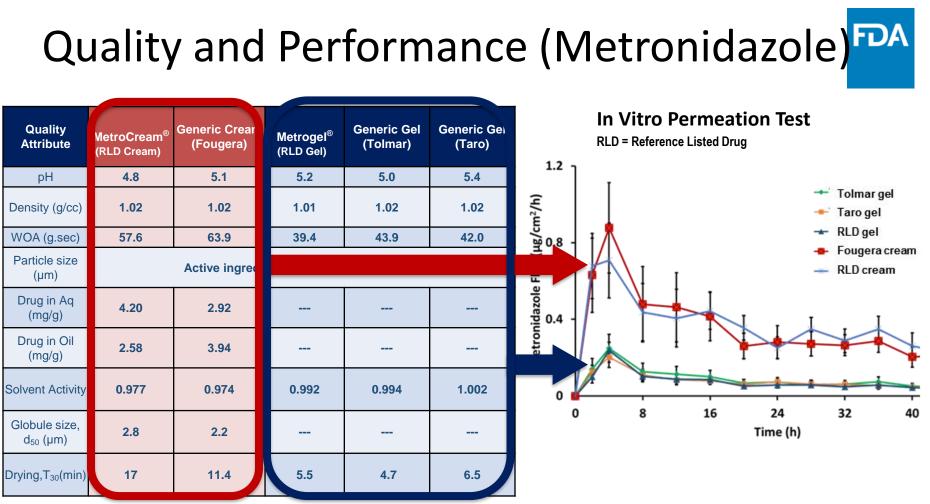
Is the Formulation a Single Phase System? e.g., solution, gel

- Viscosity/Rheology
- pH

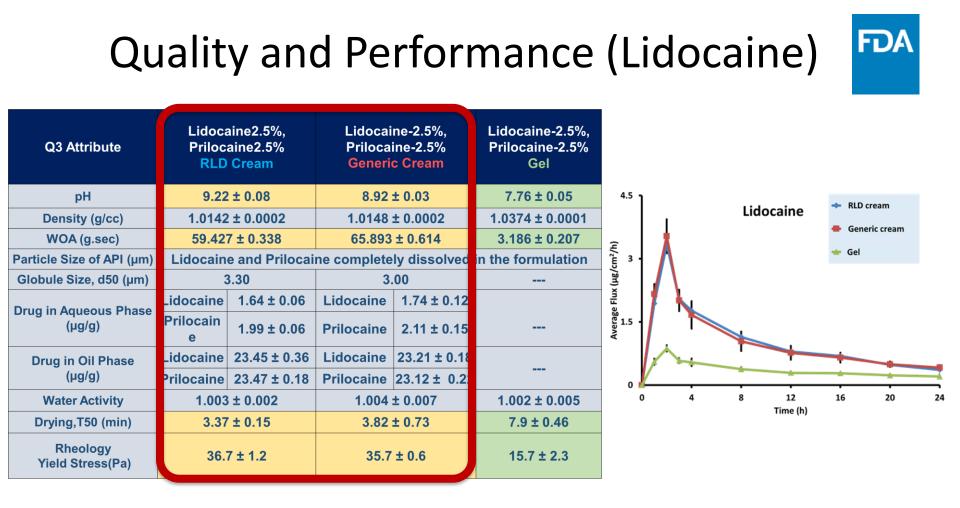
Is the Formulation a Multi Phase System? e.g., lotion, cream

In addition to the potential failure modes identified on the left....

- Phases and arrangement of matter
- Distribution/localization of drug


Example of Q3 recommended for single phase systems

- Visual Appearance
- Microscopy
- Particle size
- Polymorphic form
- Drying rate (weight loss)
- Specific gravity
- Rheology
- pH
- Etc.


Example of Q3 recommended for multi phase systems

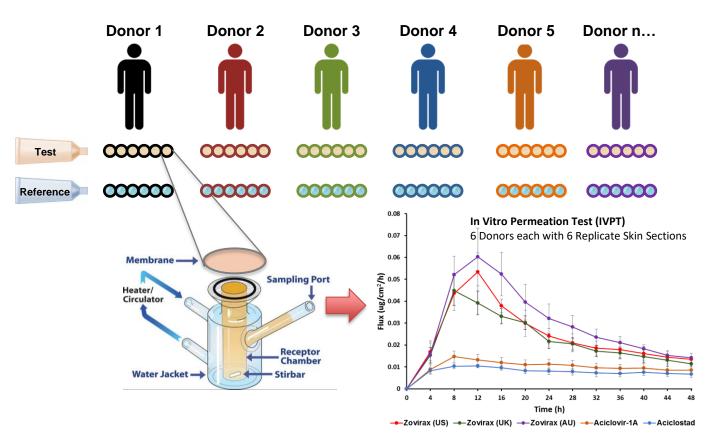
- Appearance
- Microscopy
- Particle size
- Polymorphic form
- Drying rate
- Specific gravity
- Rheology
- pH
- Globule size
- Etc.

www.fda.gov

Data courtesy Dr. Narasimha Murthy, U01FD005233

www.fda.gov

Role of IVPT


FDA

• <u>IVPT</u>

The test and RLD products are bioequivalent based upon an acceptable in vitro permeation test (IVPT) comparing the rate and extent of acyclovir permeation through excised human skin from a minimum of one lot each of the test and RLD products using an appropriately validated IVPT method.

- IVPT method development
- IVPT method validation (includes a pilot study)
- IVPT pivotal study

IVPT STUDY DESIGN

FDA

FDA

IVPT Method Development

- Apparatus Selection
- Selection of Skin Source
- Selection of Receptor Solution
- Assessment of the Barrier Integrity
- Selection of Dose Amount, Dosing Technique, and Dose Duration
- Selection of Study Duration, Sampling Schedule and Method

IVPT Method Validation

Discrimination Sensitivity and Selectivity

- Sensitivity
 - Modulation of Dose Amount
 - Modulation of Dose Duration
- Selectivity
 - Test product, Reference Product, and Altered Product

Cutaneous Pharmacokinetic Data

Microdialysis (dMD) and Open Flow Microperfusion (dOFM) directly measure the in vivo rate and extent of drug bioavailability at/near the site of action in the skin.

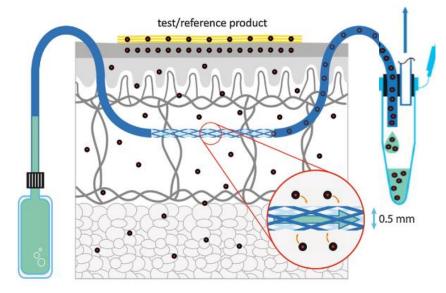


Image provided courtesy of Dr. Frank Sinner, Joanneum Research

Summary

- Topical dermatological drug products are generally complex dosage forms
- Understanding the behavior of a given formulation during metamorphosis is critical to be able to model the bioavailability of the active ingredient from the drug product
- Drug product characterization data can facilitate the development and validation of models that can be utilized for evaluation of BE
- Drug product performance data generated using in vitro (e.g., IVPT) and/or in vivo (e.g., dOFM) methodologies can also be utilized to develop and validate models. Methodologies used for drug product performance evaluation should be sensitive and discriminating
- Goal of the GDUFA regulatory science research program is to facilitate the development of modeling strategies that can be utilized as a tool to facilitate drug development and/or assess BE

Acknowledgements

Office of Research and Standards

- Sam Raney, PhD
- Markham C. Luke, MD, PhD
- Tannaz Ramezanli, PharmD, PhD
- Megan Kelchen, PhD
- Eleftheria Tsakalozou, PhD
- Andrew Babiskin, PhD
- Lei Zhang, PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for projects which were discussed was made possible, in part, by the U.S. FDA through:

- GDUFA Award U01FD00**5223** (PI Prof. S. Narasimha Murthy, University of Mississippi)
- GDUFA Award U01FD00**4946** (PI Frank Sinner, Joanneum Research)

