

In Vitro Data Analysis Issues: IVPT Analyses and Other Challenges

Streamlining Generic Drug Development by Matching Reference Product Composition and Performance, In Vitro and In Vivo Session 1 In Vitro-Based BE Approaches October 18, 2018

Priyanka Ghosh, PhD

Pharmacologist

Division of Therapeutic Performance, Office of Research and Standards Office of Generic Drugs |CDER | US FDA

www.fda.gov

Disclaimer

 This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

In Vitro Based BE Approaches

- A <u>Modular</u> Framework for In Vitro BE Evaluation
 - Q1/Q2 sameness of inactive ingredient components and quantitative composition
 - Q3 (Physical & Structural Characterization) as relevant to the nature of the product
 - IVRT (In Vitro Release Test) and
 - **IVPT** (In Vitro Permeation Test) or another bio-relevant assay may be recommended based on the complexity of the arrangement of matter in the drug product
- A <u>Scalable</u> Framework for BE Evaluation
 - In Vivo systemic PK studies may be appropriate
 - In Silico computational modeling may be useful

Correlation of Quality and Performance

www.fda.gov

Data provided courtesy of Prof. Narasimha Murthy & Dr. Frank Sinner

Influence of Dose Dispensing on Bioavailability

www.fda.gov

Data provided courtesy of Prof. Narasimha Murthy, Dr. Audra Stinchcomb & Dr. Michael Roberts

Typical Intra-Donor Variability

RLD Product Lot# "1" (redacted)

RLD Product Lot# "2" (redacted)

RLD Product Lot# "**3**" (redacted)

FDA

7

FDA

In Vitro Cutaneous Pharmacokinetics

• IVPT (In Vitro Permeation Test)

Cell images courtesy of PermeGear

IVPT Study Design

www.fda.gov

Data from 1 donor, represented as mean ± std. deviation

Test:	Estimation of Inter-donor Variability
21,22,23	n^2 1 $\sum_{n=1}^{n} (1 - \overline{1})^2$
31,32,33	$S_{I}^{-} = \frac{1}{(n-1)} \sum_{j=1}^{n} (I_{j} - I_{j})$
	J=1
41,42,43	$I_j = =(-6)$ (for donor 1) $I_i = =(-10)$ (for donor 2)
	$I_{L} = = (-12)$ (for donor 3)
Reference:	I = = (-9.33) (for donor 1)
27,28,29	
41,42,43	$\int_{S_{i}^{2}} = \frac{1}{3-1} \left((-6+9.33)^{2} + (-10+9.33)^{2} + (-12+9.33)^{2} \right)$
53,54, 55	

Estimate of Within-reference Variability

$$S_{WR}^{2} = \frac{\sum_{j=1}^{n} \sum_{i=1}^{r} (R_{ij} + R_{j})^{2}}{(r-1)n}$$

$$R_{j} = \frac{27 + 28 + 29}{3} = 28 \text{ (for donor 1)}$$
Reference:
27,28,29
41,42,43
.
53,54,55

$$S_{Wr}^{2} = \frac{((27 - 28)^{2} + (28 - 28)^{2} + (29 - 28)^{2} + \cdots}{(3-1) * 3}$$

$$S_{Wr}^{2} = 1$$

 $\overline{R_{.1}}$ is the average across all r replicates for donor J f R.

Mixed Scaled Criterion

 $S_{WR} \le 0.294$ Average Bioequivalence (ABE)

$$\bar{I} \pm t_{(n-1),\alpha/2} * \sqrt{\frac{S_I^2}{n}}$$

 $S_{WR} > 0.294$ Scaled ABE (SABE)

$$H_0: \frac{(\mu_T - \mu_R)^2}{\sigma_{WR}^2} > \theta$$
$$H_a: \frac{(\mu_T - \mu_R)^2}{\sigma_{WR}^2} \le \theta$$

Where
$$\theta = \frac{(\ln(1.25))^2}{(0.25)^2} = 0.7966$$

T and R are deemed bioequivalent if the null hypothesis is rejected. Rejection of the null hypothesis is supported if a double criterion is satisfied:

1. The upper 95% of the scaled confidence interval is ≤ 0 and

2. The point estimate is contained within the limits [0.8, 1.25].

Two one-sided tests (TOST)

T and R are deemed bioequivalent if the confidence interval is within the following limits [0.8, 1.25]

Mixed Scaled Criterion

In the example: The upper bound of the CI was >0 so we fail to reject the null hypothesis. Therefore, BE of T and R is not supported.

FDA

IVPT Statistical Analysis

Negative Controls for BE: Aciclovir-1A[®] vs. Zovirax[®] US

Aciclovir-1A® (T) vs. Zovirax® US (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.172	0.104
S _{Within Reference}	0.521	0.551
SABE [0.80, 1.25]	4.433	7.236
	(Non-BE)	(Non-BE)
N for [0.80, 1.25] with 3 Replicates	6	8

UniSA

Aciclovir-1A[®] (T) vs. Zovirax[®] US (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.290	0.366
S _{Within Reference}	0.575	0.419
SABE [0.80, 1.25]	2.383	1.884
	(Non-BE)	(Non-BE)
N for [0.80, 1.25] with 6 Replicates	8	20

IVPT Statistical Analysis

Positive Controls for BE: Aciclovir-1A[®] and Zovirax[®] US

Comparison to Self by dividing up 6 replicates

Aciclovir-1A[®] (T) vs. Aciclovir-1A[®] (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.983	0.958
S Within Reference	0.303	0.318
SABE [0.80, 1.25]	-0.026	-0.041
	(<mark>BE</mark>)	(<mark>BE</mark>)
N for [0.80, 1.25] with 4 Replicates	26+	15
N for [0.80, 1.25] with 3 Replicates	26+	15

MISSISSIPPI

Zovirax[®] US (T) vs. Zovirax[®] US (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.962	1.101
S Within Reference	0.697	0.469
SABE [0.80, 1.25]	-0.214	-0.020
	(<mark>BE</mark>)	(<mark>BE</mark>)
N for [0.80, 1.25] with 4 Replicates	12+	14
N for [0.80, 1.25] with 3 Replicates	14	15+

MISSISSIPPI

Conclusions

- IVPT is used for the assessment of bioavailability for complex drug products
- The parallel, single-dose, multiple-replicate per treatment group study design is recommended based on an understanding of the inherent variability associated with permeability of molecules across human skin
- The statistical method used for data analysis is based on the mixed scaled criterion used by CDER for Highly Variable Drugs (HVD)
- The SABE has been adapted to analyze cutaneous pharmacokinetic data
- The SABE approach can be adequately powered for establishing BE using 6-36 donors depending on variability associated with PK parameters

References

- FDA Draft Guidance for Industry on Acyclovir Cream 5%, <u>https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM428195.pdf</u>
- Schuirmann, Donald J. "A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability." *Journal of pharmacokinetics and biopharmaceutics* 15, no. 6 (1987): 657-680
- FDA Draft Guidance for Industry on Progesterone oral capsules <u>http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinform</u> <u>ation/guidances/ucm209294.pdf</u>
- Davit, Barbara M., Mei-Ling Chen, Dale P. Conner, Sam H. Haidar, Stephanie Kim, Christina H. Lee, Robert A. Lionberger et al. "Implementation of a reference-scaled average bioequivalence approach for highly variable generic drug products by the US Food and Drug Administration." *The AAPS journal* 14, no. 4 (2012): 915-924

Acknowledgements

U.S. Food & Drug Administration

- Sam Raney, PhD
- Elena Rantou, PhD
- Markham C. Luke, MD, PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for two projects for which results were shown was made possible, in part, by the FDA through: GDUFA Award U01FD00**5223**

- Narasimha Murthy, PhD GDUFA Award U01FD00**5226**
- Michael Roberts, PhD GDUFA Award U01FD00**4947**
- Audra Stinchcomb, PhD GDUFA Award U01FD00**4946**
- Frank Sinner, PhD

IVPT Bioequivalence Limits

Bioequivalence Limits, Study Power and Study Size

IVPT Method Validation

- Apparatus Qualification
- Membrane (Skin) Qualification
- Receptor Solution Qualification
- Receptor Solution Sampling Qualification
- IVPT Receptor Solution Sample Analytical Method Validation
- Environmental Control
- Pilot Study
- Permeation Profile and Range
- Precision and Reproducibility
- Recovery, Mass Balance & Dose Depletion
- Sensitivity and Selectivity
- Robustness

• Influence of Dose Dispensing on Product Quality

Human Skin Structure

