

Model-informed Drug Development for Long-acting Injectable Products

Lanyan (Lucy) Fang, Ph.D. Associate Director Division of Quantitative Methods and Modeling Office of Research and Standards Office of Generic Drugs, CDER, FDA

September 16, 2019

www.fda.gov

Disclaimer

- The views expressed in this presentation do not reflect the official policies of the FDA, or the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization implies endorsement by the United States Government.
- I do not have any financial interest or conflict of interest with any pharmaceutical companies.

Outline

- Overview
- Model informed drug development (MIDD)
 - Approved regimen not studied in phase 3
 - Strategy to handle real life scenarios
- Model integrated evidence for generic drug development and assessment
 - Quantitatively evaluate the study design and sensitivity
 - Model informed Bioequivalence (BE) assessment
- Take home messages

Long Acting Injectables (LAI)

- Extended release injectable suspensions
 - Depot, slow release of the drug into systemic circulation
 - Decrease dosing frequency (every two weeks to three months)
- Unique Pharmacokinetic (PK) profiles:
 - an initial release phase: APIs on the surface of the formulation
 - a lag phase with minimal API release
 - a main release phase: ingredients in the formulation degrade allowing the API to be absorbed systemically
- Flip-flop kinetics: the apparent half-life is long (e.g., a few weeks) and determined by the slow release, rather than the rate of elimination

MIDD: Paliperidone Case

- Indication: schizophrenia
- Extended-Release tablet is already approved (QD) regimen)
- New monthly long acting injection formulation
- Regimens studied in phase 3 trials:
 - 25 mg, 50 mg, 100 mg, 150 mg (day 1, 8, 36, 64)

- $150 \text{ mg (day1)+} \begin{cases} 25 \text{ mg (days 8, 36, and 64)} \\ 100 \text{ mg (days 8, 36, and 64)} \\ 150 \text{ mg (days 8, 36, and 64)} \end{cases}$
- Proposed regimen:
 - 150 mg (day1), 100 mg (day 8) and 75 mg (monthly)

5

Selection of Unstudied Regimen

- N≅160/arm
- All active arms better than placebo
- Safety: one death at 150 mg and dosedependent increase in body weight and serum prolactin levels
- Predicted steady state (SS) concentrations under 75 mg monthly regimen are within the blue region of 6 mg QD regimen, but 100 mg monthly regimen would be over this range.

PK Simulation for Dosing Window

- Dosing window
 - the 2nd dose
 - the monthly maintenance dose
- What to do after missing a dose?
- Switching from ER tablet or other antipsychotics
- Dosing regimen for patients with renal impairment

FDA

Model Informed Drug Development

- Modeling & Simulation results support the approval of unstudied regimen
- PK simulations are used to address real-world practice challenges: dosing window, missing dose, switching from prior treatments, dosing regimen for special patients
- All these model based recommendations are included in the product labeling

Generic LAI Development

- Bioequivalence (BE) studies are challenging
 - Long study duration due to long half-lives
 - Large number of subjects due to high PK variability
 - Product-specific guidance (PSG) generally recommends steady state (SS) BE studies in patients due to safety concerns
- BE assessment needs special considerations
 - PSG generally have specific wording on individual steady state attainment
 - Conventional BE assessment methodologies necessitate long BE studies
 - When is the most sensitive time to detect product differences?
 - Alternative BE assessment approaches are encouraged

Release Differences are More Evident Immediately after Switching for Test Products with Delayed Release

- Conventional BE metrics (Cmax and AUC) cannot differentiate these products with delayed release in SD PK studies
- pAUCs (such as AUC_{0-28d}) can differentiate PK profiles
- It will take a few months to reach new steady state after switching to products with delayed release
- Products with delayed release will have greater PK differences during the transition period after switch

www.fda.gov

Figures 3 and 10 in Citizen Petition FDA-2013-P-0608

FDA

Release Differences are More Evident after Attainment of SS for Test Products with Altered Release Rate

- Conventional BE metrics (Cmax and AUC) cannot differentiate these products with slower release rate in SD PK studies
- pAUCs (such as AUC_{14-28d}) can differentiate PK profiles

- It will take a few months to reach new steady state after switch to products with slower release rate
- Products with slower release rate will have greater PK differences at new steady state after switch

www.fda.gov

Figures 4 and 11 in Citizen Petition FDA-2013-P-0608

FDA

Pharmacometric Approaches

How Can Pharmacometric Approaches be Leveraged in Generic LAI Product Development?

- Designing adequately powered PK BE studies
 - Trial simulations comparing alternative designs
 - Optimal BE study design
- Model-based BE assessment
 - PK models fitted to the observed data
 - Account for residual drug exposure from prior treatment
 - Account for covariate effect on BE assessment
 - Steady state simulations
 - Enable BE assessment right after switch instead of at steady state

Take Home Messages

- Modeling and simulation approaches have been used throughout the lifecycle of long-acting Injectable products: drug development, regulatory approval, and dosing management in real-world clinical practice
- The model-based BE approaches are essential for complex LAI products, if ANDA applicants want to conduct BE studies in an efficient way
 - Quantitatively evaluate the study design and sensitivity
 - Maximize the information gained from efficient BE studies
 - Model-based BE assessment

Acknowledgements

- Division of Quantitative Methods and Modeling, Office of Research and Standards (ORS)
 - Sharan Satish, Ph.D.
 - Zhichuan (Matt) Li, Ph.D.
 - Hezhen Wang, Ph.D.
 - MJ Kim, Ph.D.
 - Liang Zhao, Ph.D.
- Office of Research and Standards (ORS)
 - Lei Zhang, Ph.D.
 - Robert Lionberger, Ph.D.

- Office of Bioequivalence (OB)
 - Bing Li, Ph.D.
 - Ethan Stier, Ph.D.
 - Nilufer Tampal, Ph.D.
- Office of Clinical Pharmacology (OCP)
 - Yaning Wang, Ph.D.
 - Hao Zhu, Ph.D.

