

Oral Drug Delivery (ODD) 2018 in vivo Predictive Dissolution (iPD), formulation Predictive Dissolution (fPD)



# Potential Impact of Gastric pH on Generic Drug Bioequivalence Evaluation

Jianghong Fan, Ph.D. Division of Quantitative Methods and Modeling (DQMM) Office of Research and Standards (ORS) Office of Generic Drugs (OGD) Mar. 6, 2018

# Disclaimer



 The opinions expressed during this presentation are those of the speaker, and do not necessarily represent those of the Food and Drug Administration.

 Throughout the presentation representative products or organizations may be used; no endorsement is either intended or implied.

# Outline



- Background
- Risk factors for pH-related PK issue
- Bioequivalence consideration for generic drug product
- Case examples to illustrate Agency's efforts
- Additional issues
- Regulatory activities



Time (h)

### Altered Absorption of the Drug May Occur When Gastric pH Changes

Observed in vivo DDI outcomes on 21 weak base new drugs (IR) approved between 2003 to 2013

#### For weak base drug: $\downarrow$ in exposure $\rightarrow$ efficacy concern

For weak acid drug:  $\uparrow$  in exposure  $\rightarrow$ safety concern

| Indication                                  | Drugs         | DDI           |                                       |
|---------------------------------------------|---------------|---------------|---------------------------------------|
| HIV                                         | Rilpivirine   | +             |                                       |
| HIV                                         | Atazanavir    | +             |                                       |
| HIV                                         | Darunavir     | -             |                                       |
| Lung Cancer                                 | Gefitinib     | +             |                                       |
| Lung Cancer                                 | Erlotinib     | +             |                                       |
| Lung Cancer                                 | Crizotinib    | -             |                                       |
| Liver cancer                                | Sorafenib     | -             |                                       |
| Renal cancer                                | Axitinib      | +             | "positive" was defined as             |
| Chronic myelogenous leukemia                | Bosutinib     | +             | ,<br>>25%                             |
| Chronic myeloid leukemia                    | Dasatinib     | +             |                                       |
| Acute coronary syndrome                     | Prasugrel     | +             |                                       |
| Reduce risk of stroke and systemic embolism | Dabigatran    | +             |                                       |
| Atrial fibrillation                         | Dronedarone   | -             |                                       |
| Erectile dysfunction                        | Vardenafil    | Uncategorized |                                       |
| Erectile dysfunction                        | Tadalafil     | +             |                                       |
| Invasive Aspergillus and Candida infection  | Posaconazole  | +             |                                       |
| Antibiotic                                  | Telithromycin | Uncategorized |                                       |
| Pneumonia                                   | Gemifloxacin  | +             |                                       |
| Hepatic impairment                          | Nilotinib     | +             |                                       |
| Type 2 diabetes                             | Saxagliptin   | -             | 5                                     |
| Musculoskeletal pain                        | Tapentadol    | - 2           | 266-277 hang L. et al. CPT, 96 (2014) |

#### Observed in vivo DDI Outcomes and Comment and Labeling Recommendation



#### From efficacy and toxicity perspective,

| Drug       | ARA                                   | Dosing regimen during<br>treatment period (drug/ARA)              | Timing of administration                                                                                                                         | Effect on victim<br>drug's PK                                                                                                                                                    | Comment and labeling recommendation                                                                                                                                                            |
|------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prasugrel  | H <sub>2</sub> blocker:<br>ranitidine | Multiple-dose drug + multiple-<br>dose ranitidine (150 mg b.i.d.) | Concomitant                                                                                                                                      | $C_{max}$ ↓14%;<br>AUC ⇔                                                                                                                                                         | Prasugrel can be administered with drugs that elevate gastric pH, including PPIs and H <sub>2</sub>                                                                                            |
|            | PPI: lansoprazole                     | Single-dose drug + single-dose<br>lansoprazole (30 mg)            | Concomitant                                                                                                                                      | C <sub>max</sub> ↓29%;<br>AUC ⇔                                                                                                                                                  | blockers No PPI effect                                                                                                                                                                         |
| Dabigatran | H <sub>2</sub> blocker:<br>ranitidine | Single-dose drug + multiple-<br>dose ranitidine (150 mg q.d.)     | Staggered: drug<br>administered 10 h<br>after H <sub>2</sub> blocker                                                                             | C <sub>max</sub> ⇔;<br>AUC↑2%                                                                                                                                                    | No clinically meaningful change in drug                                                                                                                                                        |
|            | PPI: pantoprazole                     | Single-dose drug + multiple-<br>dose pantoprazole (40 mg b.i.d.)  | Concomitant                                                                                                                                      | C <sub>max</sub> ↓40%;<br>AUC↓28%                                                                                                                                                | exposure No PPI effect                                                                                                                                                                         |
| Erlotinib  | H <sub>2</sub> blocker:<br>ranitidine | Single-dose drug + ranitidine<br>(300 mg q.d. or 150 mg b.i.d.)   | Concomitant or<br>staggered: drug<br>administered<br>10 h after the<br>previous ranitidine<br>evening dose and<br>2 h before the<br>morning dose | Concomitant<br>administration:<br>$C_{max} \downarrow 54\%$ ;<br>AUC $\downarrow 33\%$ .<br>Staggered<br>administration:<br>$C_{max} \downarrow 17\%$ ;<br>AUC $\downarrow 15\%$ | Erlotinib must be taken 10 h after the H <sub>2</sub> -<br>receptor antagonist dosing and at least<br>2 h before the next dose of H <sub>2</sub> -receptor<br>antagonist<br>Partial PPI effect |
|            | PPI: omeprazole                       | Single-dose drug + omeprazole<br>(40 mg q.d.)                     | Concomitant                                                                                                                                      | C <sub>max</sub> ↓61%;<br>AUC↓46%                                                                                                                                                | Avoid concomitant use with PPIs                                                                                                                                                                |

### Is There a Predictive Correlation Between Key Physiochemica **Properties of the Compounds and Their Clinical pH-effect?**

- o pKa
- log D at pH 7 Ο
- Molecular weight (MW) Ο
- Melting point 0
- Intrinsic solubility 0
- Clinical dose Ο
- Polar surface area (PSA) Ο
- Freely rotatable bonds (FRB) 0
- Hydrogen donors Ο
- Hydrogen acceptors Ο

#### Human Cmax Ratio Human AUC Ratio 0.8 0.6 0.4 0.2 0.2 0.0 0.0 2 10 2 pKa pKa AUC ratio = $AUC_{cotreated} / AUC_{untreate}$ $C_{\text{max}}$ ratio = $C_{\text{max-cotreat}}$

1.6

1.2

1.0

#### **Conclusion:**

No significant linear correlation with any parameter or combination of parameters. While there may be a trend with respect to pKa, other related parameters can confound the analysis making simple correlations difficult.

**High risk factors**: free base, high dose, pKa range 3.5–6, low solubility at high pH

1.0

0.8

0.6

Mathias. et al. Mol. Pharma., 10 (2013) 4063-4073.

Red circle: free base

Black dot: salt

7

#### **Potential Impact on Generic Drug Development**

pH-related PK issue is a function of several factors that control disintegration, dissolution, supersaturation, and precipitation





### **Potential Impact on Generic Drug Development**



Possible formulation-related factors which may cause pH-related PK issue:

- IR: different excipients, e.g. salt-base conversion
- IR: different polymorphic forms
- DR: different enteric polymers
- ER: different release mechanisms, e.g. osmotic pump vs hydrophilic matrix
- ER: different pH modifiers
- ER: different hydrophilic matrices
- o ???

How to Make Sure Generic Drugs' in vivo PK Performance is Similar to the Brand Drugs in Subjects with Elevated Stomach pH?



**Regulatory guidance:** 

- ✓ Pharmaceutical equivalence
- ✓ In vitro dissolution study at different pHs (modified release)
- $\checkmark~$  In vivo fast and fed BE PK studies in healthy subjects

#### **Research activities:**

- ✓ In vitro two-stage dissolution study
- ✓ In vivo PPI PK study
- ✓ Biopredictive dissolution development
- $\checkmark$  Modeling and simulation

#### **Case Example A : Prasugrel (R vs T: different excipients)**

|                                                                | Prasugrel -HClBCS: Class II, Weak baseLog p: 3.55pKa=5.1pH- solubility: base/saltpH 1: 28 / 78 mg/mLpH 4.5: 0.035 / 0.32 mg/mLpH 6.8: 0.01/0.07 mg/mLFormulation: HCl salt, IR tablet |                                                                   |                                                           |                                |                                                                                                     |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
|                                                                |                                                                                                                                                                                       |                                                                   | Esterase                                                  |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   |                                                           |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   | Prasugrel R-95913<br>Inactive metabolite                  |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   | Prasugrel                                                 |                                | Inactive metabolite                                                                                 |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   |                                                           |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   |                                                           |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   |                                                           |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   | R-138727<br>Active metabolite                             |                                |                                                                                                     |  |  |
|                                                                |                                                                                                                                                                                       |                                                                   |                                                           |                                | No PPI effect                                                                                       |  |  |
| Prasugrel                                                      | H <sub>2</sub> blocker:<br>ranitidine                                                                                                                                                 | Multiple-dose drug + multiple-<br>dose ranitidine (150 mg b.i.d.) |                                                           | itant $C_{max}$ ↓14%;<br>AUC ⇔ | Prasugrel can be administered with drugs that elevate gastric pH, including PPIs and H <sub>2</sub> |  |  |
| PPI: lansoprazole Single-dose drug + sin<br>lansoprazole (30 i |                                                                                                                                                                                       |                                                                   | itant $C_{max} \downarrow 29\%;$<br>AUC $\Leftrightarrow$ | blockers                       |                                                                                                     |  |  |

Zhang L. et al. CPT, 96 (2014) 266-277.

#### Information we have for the test product:



Please note that the data here are not real dissolution data, but has been generated simply to illustrate the in vitro dissolution situation for prasugrel salt test product.

```
Fast BE study: test is BE to the RLD.Fed BE study: test is BE to the RLD.RLD +PPI: H_2 blocker:<br/>ranitidineMultiple-dose drug + multiple-<br/>dose ranitidine (150 mg b.i.d.)Concomitant<br/>AUC \Leftrightarrow<br/>ConcomitantPPI: lansoprazoleSingle-dose drug + single-dose<br/>(30 mg)Concomitant<br/>Concomitant<br/>AUC \Leftrightarrow<br/>AUC \Leftrightarrow
```

#### **Question:** <u>Test +PPI?</u>



### A Mechanistic Absorption Framework (ADAM model)



Mechanistic absorption model

- $\circ$  Dissolution
- o Disintegration
- o Supersaturation
- o Precipitation
- $\circ$  Degradation

In vitro information

In vivo PK performance



CERT/

Question 1: Why test product has slower dissolution compared to the RLD? Observation: Conversion from salt to free base during storage or manufacturing (~40%) Question 2: How much control over disproportionation % is needed to ensure bioavailability in subjects with elevated gastric pH?

Cmax is Sensitive to the Solubility Values at pH 4.5 and Between pH 5 to 7



<u>Fan et al. AAPS J 19 (2017) 1479-1486</u>

#### In Vivo Intrinsic Solubility



% of base in prasugrel HCI product

2

0

Fan et al. AAPS J 19 (2017) 1479-1486

12

8

6

pH

10

FDA

#### Effect of Extent of Conversion of Salt to Free Base on BE Evaluation



Less than 20% free base in prasugrel HCl product ensures in vivo BE of the generic product including in subjects that may be taking PPI





#### **Conclusions (Prasugrel HCI)**

- Less than 20% free base in prasugrel HCl product ensures in vivo BE of the generic product including in subjects that may be taking PPI
- For BCS 2 and 4 immediate-release formulations, mechanism-based modeling could be challenging as in vitro solubility and dissolution might not be predictive.
- Multiple datasets with or without PPI are desired for model calibration and parameter estimation.

Case Example B : Nifedipine ER (R&T: different release mechanism)



BCS class II

pKa=3.93, weak acid

very low solubility across the physiological pH range

Reference: Adalat<sup>®</sup> OROS(Bayer AG, Leverkusen, Germany): osmotic pump Test: CORAL <sup>®</sup> (D.R. Drug Research S.R.L., Milano, Italy) : hydrophilic matrix









Fig. 1. Mean plasma concentration  $(\pm S.D.)$  vs. time curves of nifedipine determined after oral administration of Adalat<sup>®</sup> OROS and CORAL<sup>®</sup> under fasting conditions and after a high-fat breakfast in 24 healthy young volunteers in a four-period changeover design.

<u>Schug et al. EJPS. 15 (2002) 279-285</u><sup>19</sup>

#### pH dependent PK issue?





<u>K. Doki et al. EJPS. 109 (2017) 111-120</u>

### **Dose the Test Nifedipine Product Have PPI Effect?**



### **Regulatory activity:**

Test: Nifedipine ER, 60 mg, Hydrophilic matrix

Reference: PROCARDIA XL extended-release tablet, 60 mg (Pfizer, Inc.), Osmotic pump

- Clinical study (2017): Drug Interaction With Proton Pump Inhibitors for Nifedipine ER 1. **Tablets**
- 2. In vitro dissolution study
- 3. PBPK modeling and simulation

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Sponsor:

Food and Drug Administration (FDA)

Collaborator:

BioPharma Services, Inc

NCT 00768560



#### Some additional issues we may need to consider:

- 1. How much information obtained from the fed BE study in healthy subjects can be used to identify the potential pH-related PK issue?
- 2. Is the in vitro dissolution method in vivo predictive?
- 3. Is pH-related PK issue dissolution rate dependent or other kinetics dependent?

# How much information obtained from Fed BE study in healthy subjects can be used to identify the potential pH related PK issue?



Table 1. Physicochemical Properties of GDC-0941





Figure 4. Individual GDC-0941 exposure after oral administration of 40 mg GDC-0941 under fasting, fed (high-fat meal), and hyopchlorhydric (PPI-altered pH) conditions. Ware et al. Mol. Pharm. 10 (2013) 4047-4081

#### **PPI interaction effect < Food Effect**



| Glasdegib                           |     |
|-------------------------------------|-----|
| BCS: Class II, Weak base            |     |
| Log p: 2.28                         |     |
| pKa=6.7 (basic)                     |     |
| Waster solubility: 0.0469 mg/mL     | N N |
| Formulation: maleate salt IR tablet |     |



<u>Giri et al. Cancer Chemother Pharmacol. 80 (2017) 1249-1260</u>.

#### In vivo Predictive Dissolution Method?



Fig. 1. Dissolved drug-time profiles with USP apparatus II dissolution test in JP1 medium (pH 1.2) and in JP2 medium (pH 6.8). Each data point represents mean±S.D. (*n*=12)

<u>Sugita et al. The AAPS Journal. 16 (2014) 1119-1127.</u>

FDA

The amount of HPC in the oral formulation of pioglitazone-HCl affected the particle size distribution of precipitated pioglitazone and further affect the in vivo PK performance

#### **HPC : hydroxypropyl Cellulose**

#### SC704: HPC/pioglitazone (w/w)=1/100 ACT30: HPC/pioglitazone (w/w)=10/100



Fig. 3. The particle size distributions of the precipitated drug from ACT30 (a), SC704 and SC704 <sub>(placebo)</sub> (b). Each data line represents mean±S.D. (*n*=5)

#### Sugita et al. The AAPS Journal. 16 (2014) 1119-1127.



Fig. 8. Plasma concentration-time profiles of pioglitazone after an oral administration of a product in healthy male volunteers. Each data point represents mean  $\pm$ S.D. (n=24)

Evaluation and Optimized Selection of Supersaturating Drug Delivery Systems of Posaconazole (BCS class 2b) in the Gastrointestinal Simulator (GIS): an in vitro-in silico-in vivo Approach



#### Kinetic Dissolution from In Vitro Microdissolution Test for Model Compounds



SGF pH6 → FaSSIF

120 140 160 180



µg/mL

400

200

0

0

20

40

60

80 100

Time (min

120 140

Figure 2. Kinetic dissolution from *in vitro* microdissolution test for model compounds: Gefitinib at gastric pH 2 (panel A) and pH 6 (panel B) at a dose equivalent to a 250 mg human dose; Erlotinib at gastric pH 2 (panel C) and pH 6 (panel D) at a dose equivalent to a 150 mg human dose; Ketoconazole at gastric pH 2 (panel E) and pH 6 (panel F) at a dose equivalent to a 200 mg human dose. The dotted line denotes the time of the media transfer to FaSSIF.

160 180

μg/mL

15 10

n

0

20 40

60

80 100

Time (min)

Mathias et al. Mol. Pharmaceutics 10 (2013) 4063-4073.

### Is pH-related PK Issue Dissolution Rate Dependent or Other Kinetics Dependent?



### pH-related PK issue

#### **Dissolution Rate Dependent**

#### Both Dissolution and Other Kinetics Dependent

Changes in Cmax >> AUC А 500 180 --- R-138727 -O- R-138727 + PPI Plasma Concentration (ng/mL) - R.95913 + PP (Tm/gn) 400 5 120 300 Plasma Concentrati 100 200 80 Plasma concentration of pioglitazone (ng/mL) 60 100 40 20 0 2 10 0 Time (h) 0 10 Time (h) С D 200 - R-119251 Concentration (ng/mL) 180 500 - R-106583 160 -O- R-106583 + PP 140 400 (Bu) 120 100 300 80 200 60 Plasma 40 100 20 0 12 0 Time (h) Time (h)

Figure 2. Geometric mean plasma concentrations for the prasugrel and clopidogrel metabolites with and without lansoprazole. (A) R-138727, (B) R-95913, (C) R-119251, (D) R-106583, and (E) SR26334. PPI, proton pump inhibitor.

Small et al. J Clin Pharmacol 48 (2008) 475-484.





Fig. 2. Plasma concentration-time profiles of pioglitazone after an oral administration of a product in healthy male volunteers. Each data point represents mean  $\pm$ S.D. (*n*=20)

#### <u>Sugita et al. The AAPS Journal. 16 (2014) 1119-1127.</u>

FDA

#### **Regulatory Research Activities**

- FDA
- In Vivo Predictive Dissolution (IPD) to Advance Oral Product Bioequivalence Regulation Awarded to the University of Michigan (#HHSF223201510157C)
- Wireless Analysis Device to Measure In Vivo Drug Dissolution in the Gastrointestinal Tract
   Awarded to the University of Michigan (#HHSF223201510146)
- Modernization of in vivo-in vitro oral bioperformance prediction and assessment Awarded to the University of Michigan (#HHSF223201310144C)
- Integrating supersaturation-precipitation mechanisms in mechanistic oral absorption models for predicting in vivo performance *Awarded to Simcyp Limited (1U01FD005862)*
- Phase behavior and transformation kinetics of a poorly water soluble weakly basic drug upon transit from low to high pH conditions *Awarded to Purdue Univeristy (#HHSF223201710137C)*
- Evaluation of formulation dependence of drug-drug interaction with proton pump inhibitors (PPIs) for oral extended-release drug products *Awarded to BioPharma Services USA INC. (#HHSF223201610004I)*

https://www.fda.gov/drugs/resourcesforyou/consumers/buyingusingmedicinesafely/genericdrugs/ucm567695.htm

# Summary



- pH-related PK issue is a function of several factors that control disintegration, dissolution, supersaturation, and precipitation
- In vivo predictive dissolution method is needed to evaluate pHrelated PK issue
- Fully validated PBPK model may be used to predict pH-related PK issue

## Acknowledgements



Dr. Dajun Sun Dr. Zhanglin Ni Dr. Maxime LeMerdy Dr. Zongming Gao Dr. Andrew Babiskin Dr. Sue Chih H Lee Dr. Myong-Jin Kim Dr. Liang Zhao Dr. Lei Zhang Dr. Robert Lionberger Dr. Gordon L. Amidon (University of Michigan, USA)
Dr. Gregory E. Amidon (University of Michigan, USA)
Dr. Duxin Sun (University of Michigan, USA)
Dr. Marival Bermejo (Miguel Hernandez University, ES)
Dr. James Brasseur (University of Colorado, USA)
Dr. Luca Marciani (University of Nottingham, UK)

Dr. David Barnes Turner (Simcyp) Dr. Patrick AUGUSTIJNS (University of Leuven) Dr. Lynne Tayler (Purdue University) *BioPharma Services USA INC* 

All the postdoc fellows and graduate students