

Effects of Realistic In Vitro Test Factors on the Aerosol Properties of Metered-Dose Inhalers (MDIs)

Sneha Dhapare¹, Abhinav Mohan¹, Bryan Newman¹; Mårten Svensson²; Peter Elfman²; Dennis Sandell^{3,#}, Larry Winner⁴, Simon Berger⁵, Jürgen Bulitta⁵, Günther Hochhaus⁵

¹ Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA

² Emmace Consulting AB, Scheelevägen 22, SE-223 63 Lund, Sweden

³ S5 Consulting, Ekvägen 8, SE-275 62 Blentarp, Sweden; [#] In Memoriam, October 29, 2020

⁴ Department of Statistics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA

⁵ Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA

DDL2021 Dec 8, 2021

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Introduction

- The goal of this Generic Drug User Fee Amendments (GDUFA)-funded research (75F40119C10154) is to understand how the aerodynamic particle size distribution (APSD) and the droplet size distribution (DSD) of a MDI's emitted aerosol may change after passage through a realistic in vitro mouth-throat (MT) set-up.
- A systematic analysis of the effects from the following factors on the APSD of 3 commercial MDIs was performed using a reduced factorial design:

Methods

- Fine particle fractions of particles smaller than 5 µm (FPF<5 µm; fine particle dose divided by total emitted dose), fine particle dose of particles smaller than 5 µm (FPD<5 µm), mass median aerodynamic diameter (MMAD) and in vitro lung dose (dose exiting the MT model) were determined from the next generation impactor (NGI) stage deposition.
- Correlations between APSD parameters and volumetric diameter (Dv50, µm) and average transmission (AT, %) measured using a Spraytec system were computed.
- MDI products studied:

Product	API(s)	Formulation	
Flovent [®] HFA	Fluticasone Propionate	Suspension	
Symbicort®	Budesonide (Bud), Formoterol Fumarate Dihydrate (FF)	Suspension	
Atrovent [®] HFA	Ipratropium Bromide	Solution	
www.fda.gov			

Results: FPF<5 µm

 Significant differences in the FPF<5 µm obtained with different MT models

FPF<5 µm (%)

USP: United States Pharmacopeia induction port; AIT: Alberta Idealized Throat; OPC: Oropharyngeal Consortium; VCU: Virginia Commonwealth University; Me: Metal; PI: Plastic; S: small; M: medium; L: large

FDA

www.fda.gov

Results: FPF<5 µm

 Increasing trend in FPF<5 µm observed with small, medium and large MT models for Symbicort- FF and Bud.

USP: United States Pharmacopeia induction port; AIT: Alberta Idealized Throat; OPC: Oropharyngeal Consortium; VCU: Virginia Commonwealth University; Me: Metal; PI: Plastic; S: small; M: medium; L: large

FDA

www.fda.gov

Results: FPF<5 µm

 IP (weak, medium and strong) and FP (0.2 and 0.5 s after the start of IP) showed significant (p<0.05) effects on FPF<5 µm.

FDA

Results: Correlation between APSD and DSD

- MMAD, FPF<5 µm and FPD<5 µm of Symbicort[®] (Bud) showed highest correlation (|r|>0.6) to Dv50
- Correlation were insignificant between APSD based parameters and DSD parameters for other MDIs.

MDI	APSD-derived parameters	Laser diffraction- based Dv50	Laser diffraction-based AT
Flovent [®] HFA	MMAD	0.21	0.34
	FPF<5 µm	0.12	0.17
	FPD<5 μm	0.10	0.10
	In vitro Lung Dose	0.03	0.02
Symbicort [®] - FF	MMAD	0.28	0.02
	FPF<5 µm	0.09	0.01
	FPD<5 μm	0.12	0.00
	In vitro Lung Dose	0.01	0.00
Symbicort [®] - Bud	MMAD	0.75	0.16
	FPF<5 µm	0.67	0.22
	FPD<5 μm	0.75	0.05
	In vitro Lung Dose	0.58	0.01
Atrovent [®] HFA	MMAD	0.42	0.05
	FPF<5 µm	0.51	0.01
	FPD<5 μm	0.53	0.14
	In vitro Lung Dose	0.27	0.01

FDA

Conclusions

- Realistic in vitro APSD testing should consider the effect of different experimental conditions, particularly the type of MT model, IP and MDI FP on APSD of solution or suspension MDIs.
- Limited and product-specific correlations between the APSD-derived parameters and DSD suggests that laser diffraction may serve as an additional supporting characterization method rather than an alternative to cascade impactor-based realistic in vitro methods.

Acknowledgements

- FDA/CDER/OGD/ORS
 - Timothy Walbert
 - Denise Conti, PhD
 - Md Abdul Kaisar, PhD
 - Elizabeth Bielski, PhD
 - Liangfeng Han, MD, PhD
 - Susan Boc, PhD
 - Ross Walenga, PhD
 - Darby Kozak, PhD
 - Markham Luke, MD, PhD
 - Lei Zhang, PhD
 - Robert Lionberger, PhD

- FDA/CDER/OPQ/OTR/DCDA
 - Changning Guo, PhD
- University of Florida
 - Ann Ross
 - Elham Amini
 - Yufei Tang
- Funding for this work was made possible, in part, by the U.S. FDA through contract 75F40119C10154.

