

Factors Influencing Plume Characteristics of Metered Dose Inhalers (MDIs) Following Passage through Bio-relevant Mouth-Throat Models

Sneha Dhapare¹; Bryan Newman¹; Mårten Svensson²; Peter Elfman²; Dennis

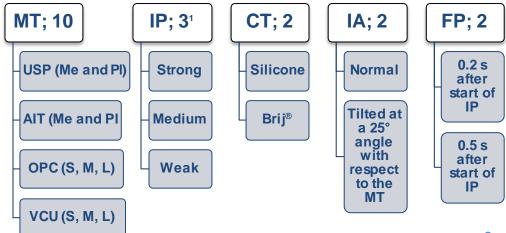
Sandell^{3,#}; Larry Winner ⁴; Jürgen Bulitta⁵; Günther Hochhaus⁵

¹ Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA

² Emmace Consulting AB, Medicon Village, SE-223 81 Lund, Sw eden
 ³ S5 Consulting, Ekvägen 8, SE-275 62 Blentarp, Sw eden; [#] In Memoriam, October 29, 2020
 ⁴ Department of Statistics, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
 ⁵ Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA

RDD 2021 May 4-7, 2021

Disclaimer



- This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.
- Funding for this work was made possible, in part, by the U.S.
 Food and Drug Administration through contract 75F40119C10154.

Introduction

- The goal of this Generic Drug User Fee Amendments (GDUFA)-funded research (75F40119C10154) is to understand how the droplet size distribution (DSD) of a MDI's emitted aerosol may change after passage through the MT in a realistic in vitro set-up.
- A systematic analysis of the effects from the following factors on the DSD of 3 commercial MDIs was performed using a reduced factorial design:
 - Realistic Mouth-Throat (MT) Models
 - Inhalation Profiles (IP)
 - MT Model Coating Types (CT)
 - MT Model Insertion Angles (IA)
 - MDI Firing Points (FP)

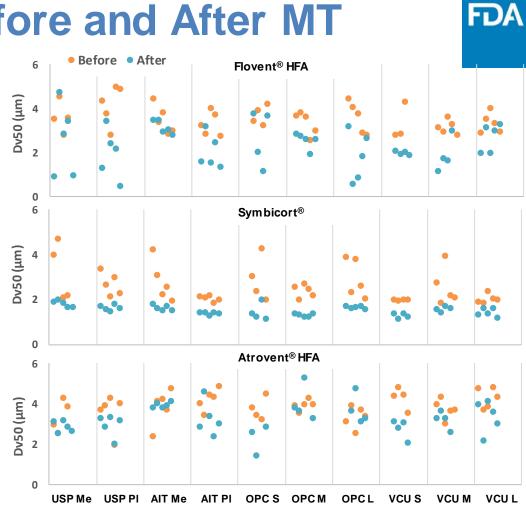
USP: United States Pharmacopeia induction port; AIT: Alberta Idealized Throat; OPC: Oropharyngeal Consortium; VCU: Virginia Commonwealth University; Me: Metal; PI: Plastic; S: small; M: medium; L: large ¹Delvadia et al. *J Aerosol Med PulmDrug Deliv* 2016, 29: 196–206.

Methods

- Volumetric diameters (µm), Dv10, Dv50, Dv90 and average transmission (AT, %) of the emitted aerosol were measured using a Spraytec system (Malvern Panalytical) with the inhalation cell connected to a breath simulator.
- Measurements were made at the exit of the inhaler actuator mouthpiece (i.e., **before the MT**) and again at the exit of the coated anatomical throat (i.e., **after the MT**).

• MDI products studied:

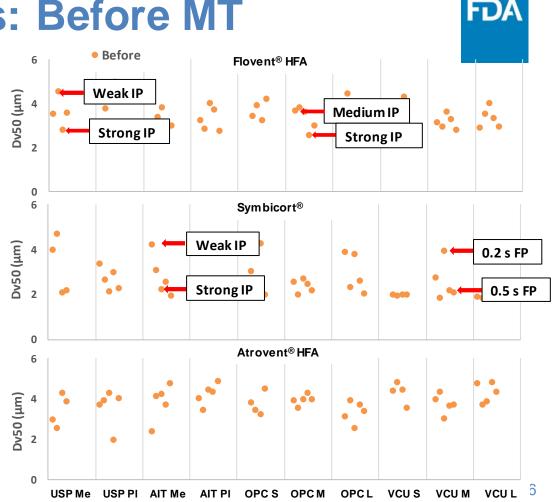
Product	API(s)	Formulation	
Flovent [®] HFA	Fluticasone Propionate	Suspension	
Symbicort [®]	Budesonide, Formoterol Fumarate Dihydrate	Suspension	
Atrovent [®] HFA	Ipratropium Bromide	Solution	



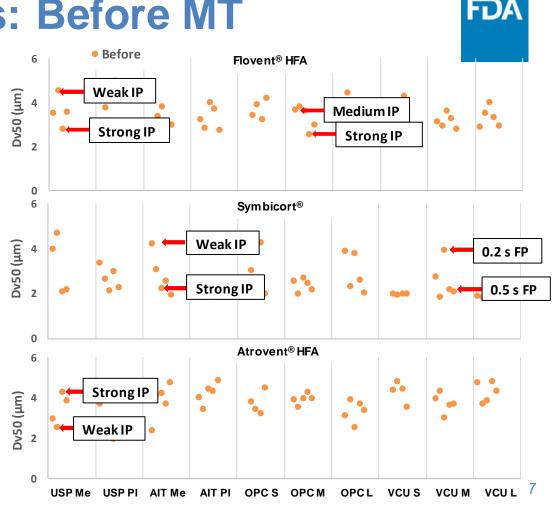
FDA

Results: Before and After MT

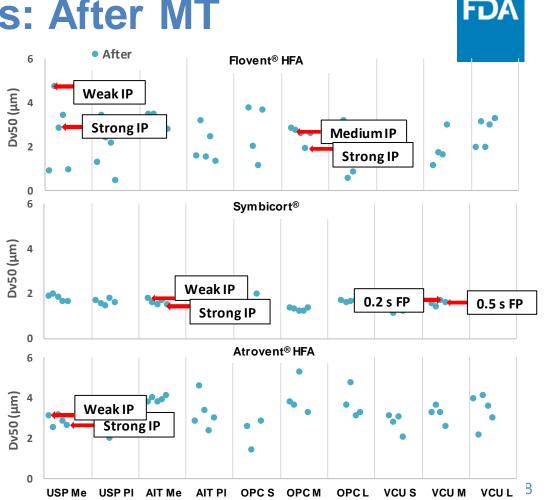
Dv50 generally decreased after passage through MT models by 1.2-3-fold.



5


Results: Before MT

- IP (weak, medium and strong) and FP (0.2 and 0.5 s after the start of IP) showed significant (p<0.05) effects on Dv50.
- **Decreasing trend** in Dv50 observed with weak, medium and strong IPs for Flovent[®] HFA and Symbicort[®].


Results: Before MT

- IP (weak, medium and strong) and FP (0.2 and 0.5 s after the start of IP) showed significant (p<0.05) effects on Dv50.
- Decreasing trend in Dv50 observed with weak, medium and strong IPs for Flovent[®] HFA and Symbicort[®].
- Increasing trend in Dv50 observed with weak, medium and strong IPs for Atrovent[®] HFA.

Results: After MT

- Large range of Dv50 as a result of different IP, CT, FP, and IA, particularly for Flovent® HFA and Atrovent[®] HFA.
- Less effect of experimental conditions on Symbicort[®].
- Effect of different sizes of MT appear product specific, but more prominent for OPC than VCU.
- Significantly (p<0.05) higher (10-40 %) Dv50 for metal version of AIT (AIT Me) as compared to plastic (AIT PI).

Results: After MT

FDA

- Choice of the MT model had the strongest effect on Dv10, Dv50, Dv90, and AT, followed by IP.
- Much smaller effects for IA and FP.
- Strong effect of CT on Dv50 of Flovent; silicone consistently resulted in a higher Dv50 as compared to Brij[®].

Eta-square values for each factor. Eta-square = 0.06 indicates a medium effect and etasquare = 0.14 indicates a large effect. Values ≥ 0.14 are shown in red and values ≥ 0.06 are shown in blue.

MDI	Parameter	eta-square				
		МТ	IP	СТ	IA	FP
Flovent [®] HFA	Dv10	0.4336	0.0037	0.0830	0.0000	0.0065
	Dv50	0.1711	0.0311	0.1886	0.0237	0.0078
	Dv90	0.2210	0.0864	0.0569	0.0167	0.0025
	AT	0.2467	0.0039	0.1053	0.0000	0.0057
Symbicort®	Dv10	0.0320	0.2264	0.0051	0.0179	0.0957
	Dv50	0.3266	0.0867	0.0005	0.0084	0.0256
	Dv90	0.4611	0.0577	0.0011	0.0000	0.0262
	AT	0.3357	0.0183	0.0183	0.0097	0.0168
Atrovent [®] HFA	Dv10	0.1962	0.0416	0.0210	0.1244	0.0041
	Dv50	0.3888	0.0622	0.0220	0.0251	0.0019
	Dv90	0.2353	0.1063	0.0143	0.0285	0.0213
	AT	0.5191	0.0256	0.0232	0.0151	0.0001

- Inhalation profile and firing point had strong effects on volumetric diameters before the mouth-throat (MT).
- The <u>mouth-throat geometry</u> had the strongest effect on plume properties after the MT of the investigated commercial MDIs, followed by inhalation profile.
- Overall, the effect of different factors on the droplet size distribution (DSD) was found to be product specific and was inconsistent within the formulation type (i.e., suspension or solution).
- Future studies are planned to explore the effect of these factors on aerodynamic particle size distribution (APSD) parameters and the correlation between DSD and APSD parameters.

Acknowledgements

- Timothy Walbert
- Denise Conti, PhD
- Md Abdul Kaisar, PhD
- Elizabeth Bielski, PhD
- Liangfeng Han, MD, PhD
- Susan Boc, PhD
- Ross Walenga, PhD
- Darby Kozak, PhD
- Markham Luke, MD, PhD
- Lei Zhang, PhD
- Robert Lionberger, PhD

- FDA/CDER/OPQ/OTR/DCDA
 - Changning Guo, PhD
- University of Florida
 - Ann Ross
 - Elham Amini
 - Yufei Tang
 - Simon Berger

FDA

Questions?

Sneha Dhapare, PhD

Pharmacologist Division of Therapeutic Performance, Office of Research and Standards Office of Generic Drugs | CDER | U.S. FDA

Sneha.Dhapare@fda.hhs.gov

https://www.fda.gov/drugs/generic-drugs/science-research

