Integrating Biopharmaceutic Data and Gastrointestinal Physiology Using Mechanistic Modeling

Rodrigo Cristofoletti

October 1st 2021

PBPK-IVIVE linked models

• Estimate fundamental parameters (deconvolution)

Process	<i>In vitro</i> system	Models	Fundamental parameters
Metabolism	Hepatocytes, human liver microsomes or recombinant enzymes	Michaelis-Menten model	K _m and V _{max}
Uptake Transport	Overexpressing cell lines suspended or plated	Mechanistic compartmental uptake models	CL_{diff} , $f_{u,cell}$, K_m and V_{max}
Dissolution / Precipitation	One- or multi-stage dissolution apparatuses	Diffusion layer models, Z-factor, Mooney model, biphasic dissolution model, transfer model, transmembrane flux model, etc.	Dependent on apparatus and model choice

- Reassemble the process using PBPK modeling (convolution)
 - Integrate drug- and formulation-specific parameters with physiology

- Reverse translation: identifying a biopredictive dissolution method
 - Ibuprofen (BCS II weak acid): free acid vs sodium salt

UNIVERSITY of FLORIDA

Modified from Legg et al, 2014. *Drugs RD* 14(4):283-290; Dewland et al, 2009. *BMC Clin Pharmacol* 9:19; Modified from Cristofoletti et al, 2017. *J Pharm Sci* 106(1):92-99.

- Model-based analysis of in vitro dissolution data (deconvolution)
 - Simultaneous fitting of a DLM to multiple *in vitro* dissolution profiles
 - Deriving a product-specific particle size distribution (P-PSD)

Lines: predicted in vitro dissolution of ibuprofen

- Integration drug and formulation parameters with physiology (convolution)
 - Simulating in vivo dissolution profiles

1.2

• Virtual BE trials

- Reference, test BE and test non-BE formulations containing ibuprofen free acid
- Post-hoc assignment of WSV to BE metrics ("Fixed subjects")

OBS 90% CI of C_{max}: 1.06 – 1.21 *Post-hoc* 90% CI of C_{max}: 0.97 – 1.13

OBS 90% CI of C_{max}: 1.18 – 1.35 Post-hoc 90% CI of C_{max}: 1.04 – 1.26

• Model-based analysis of *in vitro* precipitation data from different systems

Aqueous SIM

Organic SIM

Aqueous OBS

Organic OBS

210

240

150

180

UNIVERSITY of FLORIDA

• Ketoconazole (BCS II weak base)

Kambayashi et al, 2016. Eur J Pharm Biopharm 103:95-103; O'Dwyer et al, 2020. Pharmaceutics 12:272.

IVIVE-PBPK modeling

- Ketoconazole solution 200 mg fasted
 - Different *in vitro* systems, different results

100

80

• OBS f preciptiated 100 mg

Dumping

OBS f precipitated 300 mg

College of Pharmacy

UNIVERSITY of FLORIDA

Psachoulias et al, 2011. Pharm Res 28:3145-3158; Huang et al, 1986. Antimicrob Agents Chemother 30(2):206-210; Pathak et al, 2017. Mol Pharm 14(12):4305-4320; Cristofoletti et al. 2017 J Pharm Sci 106(2):560-569.

IVIVE-PBPK modeling

- Ketoconazole solution 400 and 800 mg fasted
 - Dose-dependent first-order precipitation rate

- Model-based analysis of *in vitro* data is helpful to derive fundamental input parameters for PBPK models, however navigating between different *in vitro* models might be challenging;
- Generalization of first-order precipitation rate across different doses is not straightforward;
- Further research is needed to optimize propagation of WSV through simulations.

Thank you!

rcristofoletti@cop.ufl.edu

