Denise S. Conti, PhD

EMERGING CONCEPTS AND NEW TECHNOLOGIES FOR BIOEQUIVALENCE OF ORALLY INHALED AND NASAL DRUG PRODUCTS

FDA

FDA

Emerging Concepts and New Technologies for Bioequivalence of Orally Inhaled and Nasal Drug Products

Denise S. Conti, PhD

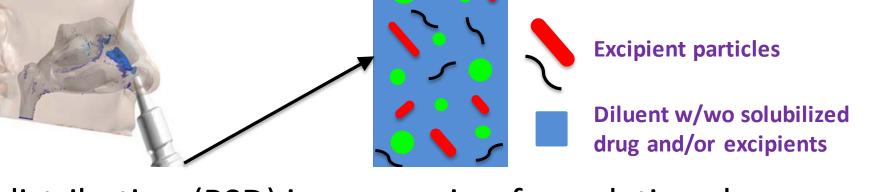
Division of Therapeutic Performance Office of Research and Standards Office of Generic Drugs, CDER, FDA

Outline

- GDUFA Regulatory Science Program
- Research initiatives for locally acting orally inhaled and nasal drug products (OINDPs)
 - A novel technique for particle size measurement in nasal suspension products and formulation/microstructure characterization in dry powder inhalers
- Conclusions

GDUFA Regulatory Science Program

- Competitive research grants and contracts are awarded yearly
- GDUFA funds are specifically allocated to stimulate innovation and growth in the generic drug field
 - Identify, study, and implement new methodologies and tools
 - Development and evaluation of quality and equivalence of new generic drug products
 - All therapeutic areas and product categories
- FDA annual public meeting provides stakeholder input on research priorities for generic drug development and regulation
 - Industry, Academia
 - Patient advocates, Professional societies


Research Initiatives for Locally Acting Orally FDA Inhaled and Nasal Drug Products (OINDPs)

- Identification of **formulation** and device variables
- Development of clinically relevant in vitro methods for prediction of in vivo drug deposition and dissolution
- Development of computational fluid dynamic (CFD) and physiology-based pharmacokinetic (PBPK) models for prediction of the fate of drugs
- Identification, validation, and standardization of novel techniques that may have the potential to reduce the burden of current BE requirements

Locally Acting Nasal Suspension Sprays

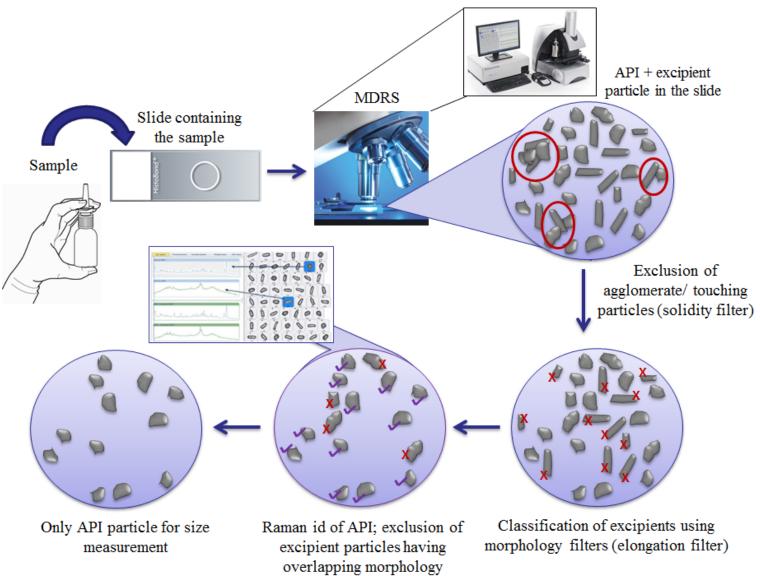
Current regulatory pathway for BE demonstration utilizes the aggregate weight-of-evidence approach Constraint Constraint Constraints

- Drug particle size distribution (PSD) in suspension formulations has the potential to influence the rate and extent of drug availability to nasal sites of action and systemic circulation
- Inability to adequately characterize drug PSD in aerosols and sprays using common analytical methods

MDRS for Nasal Suspension Sprays

- If drug PSD in test and reference products can be accurately measured using a validated advanced analytical method, generic applicants may submit comparative drug PSD data
- The Morphologically-Directed Raman Spectroscopy (MDRS) opens this possibility

Drug Particle

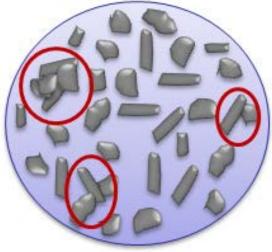

- Novel in vitro technology
- Enables drug PSD comparison

http://www.newsmedical.net/news

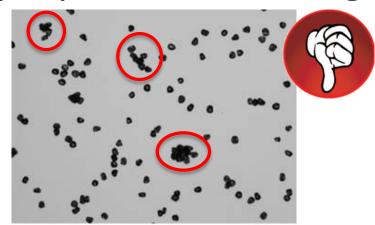
www.fda.gov

MDRS: How does it work?

FDA

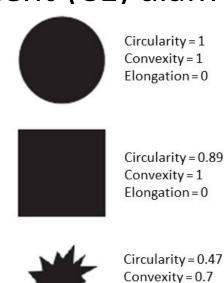

www.fda.gov

Courtesy of Dr. Abir Absar, Ph.D. (FDA/OCP)


Removal of Agglomerates and Touching Particles

- May consist of
 - Excipient-excipient particles
 - Drug-drug particles
 - Drug-excipient particles

• Sample preparation – Can give misleading data



Particle Classification Using Morphology **Filters**

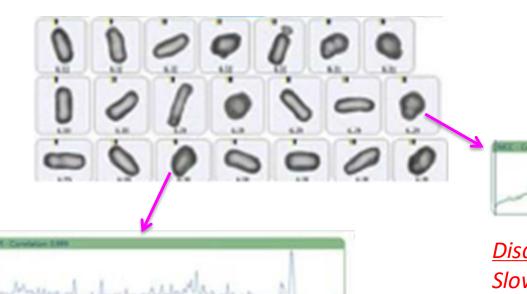
- Should not exclude drug particles
- Morphology filters
 - Size
 - Circular equivalent (CE) diameter
 - Shape
 - Aspect ratio
 - Elongation
 - Circularity
 - Convexity
- Solicity www.fda.gov

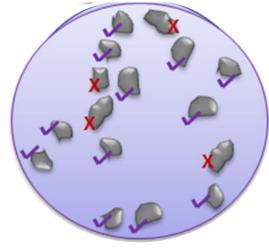
Circularity = 1 Convexity = 1 Elongation = 0

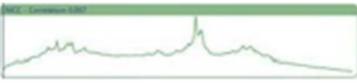
Elongation = 0.24

Circularity = 0.47 Convexity = 1 Elongation = 0.82

Circularity = 0.52 Convexity = 1Elongation = 0.79


FDA


Cannot completely separate API and excipient particles due to particles with overlapping morphological features.



Chemical Identification by Raman Spectra

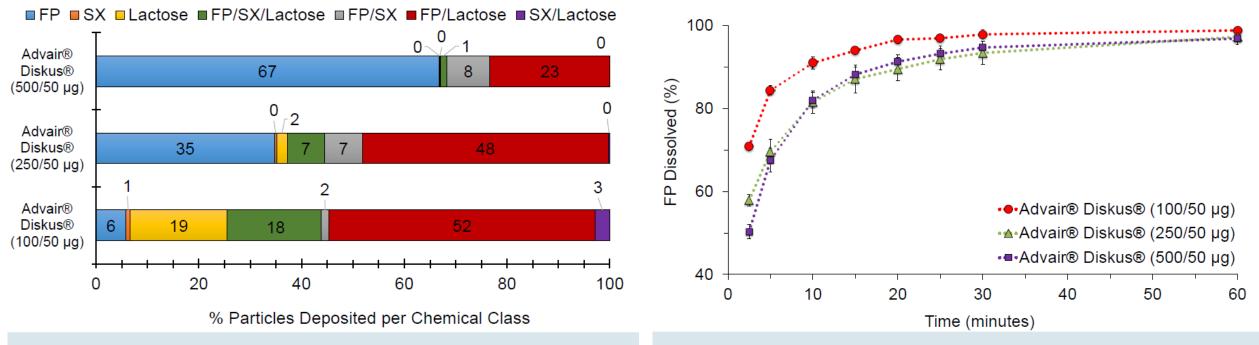
- Identifies particles with overlapping morphological features
- API/Excipient particles typically show different Raman profiles
 - Each molecule has a unique spectrum

GDUFA Research Has Informed ANDA Review Process and PSG Development

- We have been able to use MDRS
 - to support BE review for complex nasal suspension products, which precluded an applicant from repeating a comparative clinical endpoint study, and led to ANDA approval for the first generic Mometasone Furoate Nasal Suspension [RLD: Nasonex[®] NDA 20-762]
 - in PSGs as alternate approach to the comparative clinical endpoint study for other nasal suspension products
 - Fluticasone Propionate
 - Fluticasone Propionate and Azelastine Hydrochloride
- www.fda.gov Triamcinolone Acetonide

Microstructure of DPIs Using Orthogonal Analytical Approaches

- FY-17 contract # HHSF223201710116C
 - Awarded to University of Bath
- The objective of this project is to evaluate a range of orthogonal analytical techniques and utilize a combination of them to support the development and validation of methods in characterizing microstructures of an array of reference listed drug (RLD) dry powder inhaler (DPI) formulations


Methods

- <u>Product selection</u>: all products were commercially manufactured by the same pharmaceutical company
- <u>Aerosolized fraction collection</u> (impactor-sized mass, ISM): Unidose[®] aerosol collection system via USP inlet port at a fixed flow rate of 60 L/min for 4 seconds
- <u>MDRS</u>: filter substrate with ISM from one actuation mounted on the sample stage of a Morphologi G3-ID[®]
- In vitro dissolution: modified USP Apparatus V, samples taken at 2.5, 5, 10, 15, 25, 30, 60, 120, 180, 240 min, ISM collected from equivalent 500mcg fluticasone

Mangal, S.; Conti, D. S.; Delvadia, R.; Oguntimein, O.; Shur, J.; Price, R. "Microstructural Mapping of Dry Powder Inhalers (DPIs) using Morphologically Directed Raman Spectroscopy (MDRS): A Novel Analytical Tool for DPI Characterization." In: AAPS Annual Meeting, 2018, Washington DC, USA. Poster presentation.

Results: Same DPI product, but different FDA FP fractions

Figure 1: Particles deposited per chemical class (%) of the ISM of Advair[®] Diskus[®] (FP/SX; 100/50 μg), Advair[®] Diskus[®] (FP/SX; 250/50 μg), and Advair[®] Diskus[®] (FP/SX; 500/50 μg). These are presented as mean ± standard deviation (n=5).

Figure 2: FP dissolved (%) from the ISM of Advair[®] Diskus[®](100/50 μg) as Red Circle, Advair[®] Diskus[®] (250/50 μg) as Green Triangle, and Advair[®] Diskus[®] (500/50 μg) as Purple Square. These are presented as mean ± standard deviation (n=2).

Mangal, S.; Conti, D. S.; Delvadia, R.; Oguntimein, O.; Shur, J.; Price, R. "Microstructural Mapping of Dry Powder Inhalers (DPIs) using
Morphologically Directed Raman Spectroscopy (MDRS): A Novel Analytical Tool for DPI Characterization." In: AAPS Annual Meeting, 2018, Washington DC, USA. Poster presentation.

Results: FP fractions across DPI products

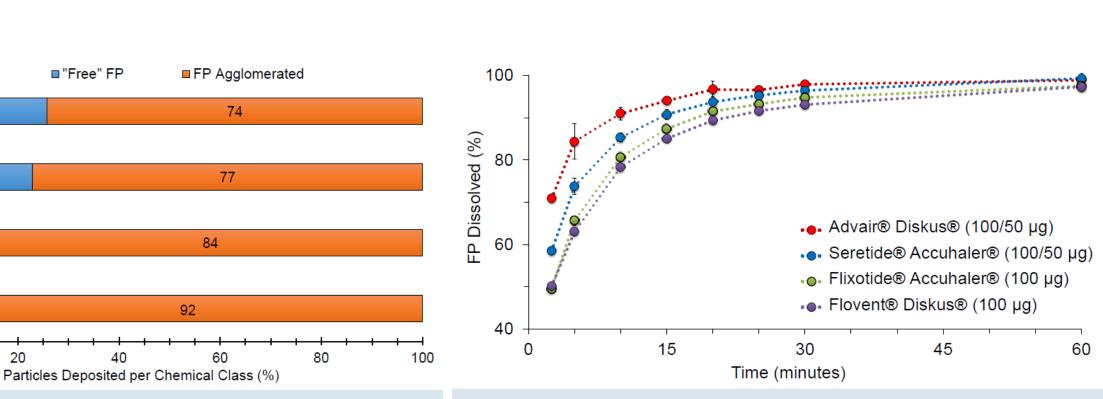


Figure 3: Particles deposited per chemical class (%) of the ISM of Advair® Diskus® (FP/SX; 100/50 µg), Flixotide® Accuhaler® (FP; 100 µg), Flovent® Diskus® (FP; 100 µg), and Seretide® Accuhaler[®] (FP/SX; 100/50 μ g). These are presented as mean \pm standard deviation (n=5).

Flixotide®

Accuhaler® (100 µg)

Flovent®

Diskus®

(100 µg)

Seretide™

Accuhaler™

(100/50 µg)

Advair®

Diskus®

(100/50 µg)

26

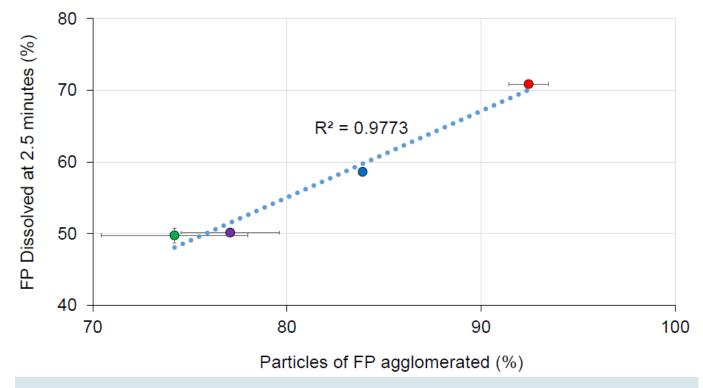
23

20

16

8

Figure 4: FP dissolved (%) from the ISM of Advair® Diskus® (100/50 µg), Flixotide® Accuhaler® (100 µg), Flovent[®] Diskus[®] (100 µg), and Seretide[®] Accuhaler[®] (100/50 µg). These are presented as mean \pm standard deviation (n=2).


Mangal, S.; Conti, D. S.; Delvadia, R.; Oguntimein, O.; Shur, J.; Price, R. "Microstructural Mapping of Dry Powder Inhalers (DPIs) using Morphologically Directed Raman Spectroscopy (MDRS): A Novel Analytical Tool for DPI Characterization." In: AAPS Annual Meeting, www.fda.gov 2018, Washington DC, USA. Poster presentation.

FDA

Results: FP in different DPI products

FDA

FP microstructure vs. FP dissolved – good correlation

Figure 5: FP dissolved at 2.5 minutes (%) as a function of FP-lactose agglomerates (%) for Advair[®] Diskus[®] (100/50 µg, red circle); Flixotide[®] Accuhaler[®] (100 µg, green circle); Flovent[®] Diskus[®] (100 µg, purple circle); and Seretide[®] Accuhaler[®] (100/50 µg, blue circle).

Mangal, S.; Conti, D. S.; Delvadia, R.; Oguntimein, O.; Shur, J.; Price, R. "Microstructural Mapping of Dry Powder Inhalers (DPIs) using Morphologically Directed Raman Spectroscopy (MDRS): A Novel Analytical Tool for DPI Characterization." In: AAPS Annual Meeting, 2018, Washington DC, USA. Poster presentation.

www.fda.gov

Conclusions

- GDUFA Regulatory Science Research supports ANDA review, approval and guidance development
- Research initiatives for locally-acting OINDPs explore new techniques to make generic product development and BE demonstration faster and more cost-effective
- An advanced analytical method, such as MDRS:
 - enables a comparison of drug PSD in generic and reference nasal spray suspension products
 - has the potential to provide information on formulation and/or microstructure differences between DPI products

FDA

Acknowledgements

- Abir Absar, Ph.D.
- Jason Rodriguez, Ph.D.
- Changning Guo, Ph.D.
- Kimberly Witzmann, M.D.
- Markham Luke, M.D., Ph.D.
- Robert Lionberger, Ph.D.
- Jag Shur, Ph.D.
- Robert Price, Ph.D.
- Sharad Mangal, Ph.D.

FDA **FDA FDA** FDA **FDA FDA** University of Bath University of Bath **Pearl Therapeutics** (former ORISE at FDA)

