

Utilizing Mechanistic Dermal Absorption Models to Assess Virtual BE

James F Clarke PhD Senior Research Scientist **SIM**#CYP

CERTARA

Reuse of Models and Modelling Strategy

Mechanistic and PBPK Models – Unique advantages for Model Reuse

Systems	Trial	Drug	Formulation	
Data	Design	Data	Data	

Systems	Trial	Drug	Formulation	
Data	Design	Data	Data	

Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]

Systems	Trial	Drug	Formulation
Data	Design	Data	Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]		MW LogP pKa Protein binding BP ratio <i>In vitro</i> Metabolism Permeability Solubility	

Systems	Trial	Drug	Formulation
Data	Design	Data	Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]		MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation

Systems	Trial	Drug	Formulation
Data	Design	Data	Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation

Systems Data	Trial Design	Drug Data	Formulation Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic IVIVE	PBPK Framework	
	Prediction of drug PK (PD)	in population of interest	

Systems Data	Trial Design	Drug Data	Formulation Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic IVIVE	PBPK Framework	

vstems Data	Trial Design	Drug Data	Formulation Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic IVIVE F	BPK Framework	
	Prediction of drug PK (PD) i	n population of interest	

vstems Data	Trial Design	Drug Data	Formulation Data
Age Weight Tissue Volumes Tissue Composition Cardiac Output Tissue Blood Flows [Plasma Protein]	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio <i>In vitro</i> Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic P .VE P	BPK Framework	
	Prediction of drug PK (PD) i	n population of interest	

vsteins Data	Trial Design	Drug Data	Formulation Data
	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic / .VE	PBPK Framework	

vstems Data	Trial Design	Drug Data	Formulation Data
	Dose Administration route Frequency Co-administered drugs Populations No of male/female	MW LogP pKa Protein binding BP ratio In vitro Metabolism Permeability Solubility	Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic F .VE F	PBPK Framework	

vsten.s Data	Trial Design	Drug Data	Formulation Data
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size Excipients Release Disintegration Viscosity Evaporation
	Mechanistic J VE	PBPK Framework	
	Prediction of drug PK (PD)	in population of interest	

CERTA

Vstein.s Data	Trial Design	Drug Data	Formulation Data	
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size Excipients Release Disintegration Viscosity Evaporation	
Mechanistic J' VE PBPK Framework				
	Prediction of drug PK (PD) in population of interest		

vsteins Data	Trial Design	Drug Data	Formulation Data	
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size Excipients	
Mechanistic J' VE PBPK Framework				
	Prediction of drug PK (PD)	in population of interest		

vstems Data	Trial Design	Drug Data	Formulation Data	
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size Excipients	
Mechanistic I' VE PBPK Framework				
	Prediction of drug PK (PD)	in population of interest		

Vstein.s Data	Trial Design	Drug Data	Formulation Data	
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size	
	Prediction of drug PK (PD)) in population of interest		

CERTA

Vstein.s Data	Trial Design	Drug Data	Formulation Data	
	Dose Administration route Frequency Co-administered drugs Populations No of male/female		Particle Size	
Mechanistic I' VE PBPK Framework				
	Prediction of drug PK (PD)) in population of interest		

Verification of the platform - Open Science

Cumulative number of publications over years 2007 - 2022

Topics of Simcyp publications in 2021-2022

Dermal PBPK Modelling – MPML MechDermA

Built over the past 8 years, funded by various FDA grants in collaboration with OGD:

Dermal PBPK Modelling – MPML MechDermA

Built over the past 8 years, funded by various FDA grants in collaboration with OGD:

Modeling Metamorphosis of Topical/Transdermal Formulations

Modeling Metamorphosis of Topical/Transdermal Formulations

Papers and Posters

Development of a PBPK model for topical lidocaine in order to predict systemic absorption in healthy volunteers, geriatrics and paediatrics

CERTARA Simcyp

Farzaneh Salem, Nikunjkumar Patel and Sebastian Polak. Simcyp Division, Certara UK Limited, Sheffield, UK

Papers and Posters

Development of a PBPK model for topical lidocaine in order to predict systemic absorption in healthy volunteers, geriatrics and paediatrics

CERTARA^O Simcyp

Farzaneh Salem, Nikunjkumar Patel and Sebastian Polak. Simcyp Division, Certara UK Limited, Sheffield, UK

Quantitative description of the physiological changes in diseased skin and their incorporation into Physiologically Based Pharmacokinetic Models.

CERTARA^O Simcyp

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2} ¹Certara, Simcyp-Division, Level-2 Acero, 1 Concourse way, Sheffield, United Kingdom. ²Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland

Papers and Posters

Development of a PBPK model for topical lidocaine in order to predict systemic absorption in healthy volunteers, geriatrics and paediatrics

CERTARA^O Simcyp

CERTAR

Simcyp

Farzaneh Salem, Nikunjkumar Patel and Sebastian Polak. Simcyp Division, Certara UK Limited, Sheffield, UK

Quantitative description of the physiological changes in diseased skin and their incorporation into Physiologically Based Pharmacokinetic Models.

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2} ¹Certara, Simcyp-Division, Level-2 Acero, 1 Concourse way, Sheffield, United Kingdom. ²Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland

Predicting Diffusion in the Dermis: a Physiologically Based, Bottom-up Approach

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2}

¹Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom, ²Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland

Papers and Posters

Modeling *in vitro* skin permeation experiments to mechanistically understand *in vivo* dermal absorption: Application of *in vitro-in vivo* extrapolation (IVIVE) and physiological based pharmacokinetic (PBPK) modeling using testosterone as model drug

Sumit Arora¹, Nikunjkumar Patel¹ and Sebastian Polak^{1,2}

¹Certara UK Ltd, Simcyp Division, Sheffield; ²Faculty of Pharmacy, Jagiellonian University Medical College, Poland

Quantitative description of the physiological changes in diseased skin and their incorporation into Physiologically Based Pharmacokinetic Models.

CERTARA

Simcyp

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2} ¹Certara, Simcyp-Division, Level-2 Acero, 1 Concourse way, Sheffield, United Kingdom. ²Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland

Predicting Diffusion in the Dermis: a Physiologically Based, Bottom-up Approach

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2}

¹Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom, ²Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland

er to predict systemic

CERTARAO

Simcyp

CERTAR

Simcyp

Papers and Posters

James Clarke¹, Nikunjkumar Patel¹, Sebastian Polak^{1,2}

¹Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom, ²Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland

Modeling <i>in vitro</i> skin permeation experime understand <i>in vivo</i> dermal absorption: Applic extrapolation (IVIVE) and physiological based modeling using testosterone as model drug Sumit Arora ¹ , Nikunjkumar Patel ¹ and Sebastian Polak ^{1,2} ¹ Certara UK Ltd. Simcyp Division. Sheffield: ² Faculty of Pharmacy. Jagiellor	ents to mechanistically ation of <i>in vitro-in vivo</i> oha Mechanistic Physiologically-Based Pharmacokinetic Modelling for Prediction of Dermal Absorption in Psoriatic Patients	CERTARAO Simovo CERTARAO Simcyp
Development of the dermal absorr	F MARTINS ¹ , N PATEL ¹ , M. JAMEI ¹ and S POLAK ^{1,2} ¹ Simcyp Limited, UK; ² Faculty of Pharmacy, Jagiellonian University Medical College, Poland Email:Frederico.martins@certara.com	
ketoprofen local and systemic exp Sebastian Polak ^{1,2} , Nikunjkumar Patel ¹	 Predicting local tissue concentrations after topical drug application with a physiologically-based pharmacokinetic model 	CERTARA. Simcyp
¹ Simcyp (a Certara company), Sheffield, United Kingdom, ² Jagiellonian U	Jniv James Clarke, Sebastian Polak, Nikunjkumar Patel Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, United Kingdom	
Predicting Diffusion in the Dermis: a Physi	Assessing Formulation Attributes' Impact On Local And Systemic Exposure Of Clindamycin After Topical Application Of Pro-Drug Clindamycin Phosphate Using PBPK Modelling	CERTARA Simcyp
James Clarke ¹ , Nikunjkumar Patel ¹ , Sebastian Polak ^{1,2} ¹ Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, U	iebastian Polak ^{1,2} , Nikunjkumar Patel ¹ , Karen Rowland-Yeo ¹ , Masoud Jamei ¹ Simcyp (a Certara company), Sheffield, United Kingdom, ² Jagiellonian University Medical College, Kraków, Poland	

Papers and Posters

Papers and Posters

CERTA

Papers and Posters

Papers and Posters

Mechanistic modelling of dermal drug absorption using th Case study of a transdermal patch forn Multi-phase Multi-layer MechDermA model: Development, verification and application of a PBPK-PD model of dermal absorption for transdermal product assessment

N. Patel^a, S. Cristea^a, R. Rose^a, F. Salem^a, K. Abduljalil^a, T. Jo H.-P., Lin^b, B. Newman^b, E. Chow^b, P. Ghosh^b Frederico Martins¹, Nikunikumar Patel¹, Farzaneh Salem¹, Masoud Jamei¹, Sebastian Polak^{1,2} ¹Simcyp (a Certara company), Sheffield, United Kingdom, ²Jagiellonian University Medical College, Kraków, Poland a Simcyp Limited (a Certara Company), Sheffield Spring, Maryland, USA; e Faculty of Pharmacy, Jagiellonian University Medical College, Poland. simulator | consultancy | educati Simcyp Nikunikumar Datali and Cohactian Dala CERTARAC Multi-phase Multi-layer MechDermA model: Development, verification and application of PBPK-PD model of dermal Simcyp absorption for topical product assessment Frederico Martins¹, Nikunjkumar Patel¹Farzaneh Salem¹, Masoud Jamei¹, Sebastian Polak^{1,2} CERTARA ¹Simcyp (a Certara company), Sheffield, United Kingdom, ²Jagiellonian University Medical College, Kraków, Poland CERTAR Simcyp pharmacokinetic (PBPK) model for enhanced based understanding of dermal absorption: prediction of local tissue CONTACT INFORMATION: N Simcyp exposure after topical application of acitretin Skin Forum Sumit Arora¹, Nikunjkumar Patel¹ and Sebastian Polak^{1,2} ¹Certara UK Ltd, Simcyp Division, Sheffield; ²Faculty of Pharmacy, Jagiellonian University Medical College, Poland Predicting Depth Resolved Concentrations in the Dennis using PBPK modelling: Design, development and verification of the CERTARA #T1230-05-037 model with five drugs Simcyp CERTAR **Development and Validation of a Dermal PBPK Model for Prediction of the Hair Follicular Absorption of Caffeine:** Simcyp AND COMMUNITY Application of the Simcyp MPML MechDermA model CONTACT INFORM

Frederico S Martins¹, Nikunjkumar Patel¹, Masoud Jamei¹ and Sebastian Polak^{1,2}

© Copyright 2022 ¹Simcyp (a Certara company), Sheffield, United Kingdom, ²Jagiellonian University Medical College, Kraków, Poland

CERTAR

Simcyp

Papers and Posters

Mechanistic modelling of dermal drug absorption using th Case study of a transdermal patch forn Multi-phase Multi-layer MechDermA model: Development, verification and application of a PBPK-PD model of dermal absorption for transdermal product assessment

CERTAR

Simcyp

N. Patel^a, S. Cristea^a, R. Rose^a, F. Salem^a, K. Abduljalil^a, T. Jo H.-P., Lin^b, B. Newman^b, E. Chow^b, P. Ghosh^b Frederico Martins¹, Nikunjkumar Patel¹, Farzaneh Salem¹, Masoud Jamei¹, Sebastian Polak^{1,2} ¹Simcyp (a Certara company), Sheffield, United Kingdom, ²Jagiellonian University Medical College, Kraków, Poland a Simcyp Limited (a Certara Company), Sheffield Spring, Maryland, USA; e Faculty of Pharmacy, Jagiellonian University Medical College, Poland. simulator | consultancy | educ Simcyp Nikunikumar Datali and Cobactian Dala CERTARAC Multi-phase Multi-layer MechDermA model: Development, verification and application of PBPK-PD model of dermal Simcyp absorption for topical product assessment Frederico Martins¹, Nikunjkumar Patel¹Farzaneh Salem¹, Masoud Jamei¹, Sebastian Polak^{1,2} CERTARA ¹Simcyp (a Certara company), Sheffield, United Kingdom, ²Jagiellonian University Medical College, Kraków, Poland **CERTAR** Simcyp pharmacokinetic (PBPK) model for enhanced based CONTACT INFORMATION: N understanding of dermal absorption: prediction of local tissue Simcyp exposure after topical application of acitretin Skin Forum Sumit Arora¹, Nikunjkumar Patel¹ and Sebastian Polak^{1,2} ¹Certara UK Ltd, Simcyp Division, Sheffield; ²Faculty of Pharmacy, Jagiellonian University Medical College, Poland Predicting Depth Resolved Concentrations in the Dennis using PBPK modelling: Design, development and verification of the aaps _ CERTARAO #T1230-05model with five drugs 037 CERTARA **Development and Validation of a Dermal PBPK Model for** Development a **Prediction of the Hair Follicular Absorption of Caffeine: Prediction of** Simcyp Application of the Simcyp MPML MechDermA model Application c CONTACT INFORM

© Copyright 2022 Frederico S Martins¹, Nikunjkun [©] Copyright 2022

Frederico S Martins¹, Nikunjkumar Patel¹, Masoud Jamei¹ and Sebastian Polak^{1,2}

Papers and Posters

© Copyright 2022

Mechanistic modelling of dermal drug absorption using th Case study of a transdermal patch forn Multi-phase Multi-layer MechDermA model: Development, verification and application of a PBPK-PD model of dermal absorption for transdermal product assessment CERTARA. Simcyp

Frederico S Martins¹, Nikunjkun ¹Simcyp (a Certara company), Sl

© Copyright 2022

© Copyright 2022 ¹Simcyp (a Certara company), SI

Frederico S Martins¹, Nikunjkumar Patel¹, Masoud Jamei¹ and Sebastian Polak^{1,2}

Received: 11 August 2020; Accepted: 28 September 2020; Published: 30 September 2020

ARTICLE

Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin

Nikunjkumar Patel¹ Frederico Martins¹ Omid Arjmandi-Tash¹ Sam G. Raney² | Masoud Jamei¹ | Sebastian Polak^{1,3}

James F. Clarke¹ | Farzaneh Salem¹ | Sumit Arora¹ | Eleftheria Tsakalozou² Sinziana Cristea¹ | Priyanka Ghosh²

Tariq Abdulla¹ Arran Hodgkinson¹ Khondoker Alam²

om

MDPI

Article

Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations

Santosh Kumar Puttrevu 1.*, Sumit Arora 1, Sebastian Polak 1.2 and Nikunj Kumar Patel 1

- ¹ Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Sumit.Arora@certara.com (S.A.); sebastian.polak@certara.com (S.P.); nikunjkumar.patel@certara.com (N.K.P.)
- ² Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., 30-688 Krakow, Poland
- * Correspondence: santoshkumar.puttrevu@certara.com; Tel.: +44 (0) 114 460 0165

Received: 11 August 2020; Accepted: 28 September 2020; Published: 30 September 2020

, Masoud Jamei¹ and Sebastian Polak^{1,2}

ARTICLE

Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin

Nikunjkumar Patel¹ Frederico Martins¹ Sam G. Ranev² | Masoud Jamei¹ | Sebastian Polak^{1,3}

James F. Clarke¹ | Farzaneh Salem¹ | Sumit Arora¹ | Eleftheria Tsakalozou² Omid Arjmandi-Tash¹ | Sinziana Cristea¹ | Priyanka Ghosh²

Tariq Abdulla¹

MDPI

oharmaceutics

Article

Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations

Santosh Kumar Puttrevu 1.*, Sumit Arora 1, Sebastian Polak 1.2 and Nikunj Kumar Patel 1

- ¹ Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Sumit.Arora@certara.com (S.A.); sebastian.polak@certara.com (S.P.); nikunjkumar.patel@certara.com (N.K.P.)
- ² Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., 30-688 Krakow, Poland
- * Correspondence: santoshkumar.puttrevu@certara.com; Tel.: +44 (0) 114 460 0165

Mechanistic Modeling of In Vitro Skin Permeation and Extrapolation to In Vivo for Topically Applied Metronidazole Drug Products Using a Physiologically Based Pharmacokinetic Model

Sumit Arora,* James Clarke, Eleftheria Tsakalozou, Priyanka Ghosh, Khondoker Alam, Jeffery E. Grice, Michael S. Roberts, Masoud Jamei, and Sebastian Polak

Cite This: Mol. Pharmaceutics 2022, 19, 3139–3152

ARTICLE

Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin

Frederico Martins¹ Sam G. Raney² | Masoud Jamei¹ | Sebastian Polak^{1,3}

Nikunjkumar Patel¹ | James F. Clarke¹ | Farzaneh Salem¹ | Tariq Abdulla¹ Sumit Arora¹ | Eleftheria Tsakalozou² | Arran Hodgkinson¹ Omid Arjmandi-Tash¹ | Sinziana Cristea¹ | Priyanka Ghosh²

oharmaceutics

Article

Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations

Santosh Kumar Puttrevu 1.*, Sumit Arora 1, Sebastian Polak 1.2 and Nikunj Kumar Patel 1

- ¹ Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Sumit.Arora@certara.com (S.A.); sebastian.polak@certara.com (S.P.); nikunjkumar.patel@certara.com (N.K.P.)
- ² Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., 30-688 Krakow, Poland
- * Correspondence: santoshkumar.puttrevu@certara.com; Tel.: +44 (0) 114 460 0165

Received: 11 August 2020; Accepted: 28 September 2020; Published: 30 September 2020

Contents lists available at ScienceDirect

Journal of Pharmaceutical Sciences

journal homepage: www.jpharmsci.org

Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism

Development and Qualification of a Physiologically Based Pharmacokinetic Model of Finasteride and Minoxidil Following Scalp Application

Arpar Ngampanya^a, Udomsak Udomnilobol^b, Pakawadee Sermsappasuk^c, Natapol Pornputtapong^d, Boonsri Ongpipattanakul^d, Nikunjkumar Patel^e, Suree Jianmongkol^{a,*}, Thomayant Prueksaritanont^{b,**}

pubs.acs.org/molecularpharmaceutics

Khondoker Alam²

MDPI

Article

Mechanistic Modeling of In Vitro Skin Permeation and Extrapolation to In Vivo for Topically Applied Metronidazole Drug Products Using a Physiologically Based Pharmacokinetic Model

Sumit Arora,* James Clarke, Eleftheria Tsakalozou, Priyanka Ghosh, Khondoker Alam, Jeffery E. Grice, Michael S. Roberts, Masoud Jamei, and Sebastian Polak

Cite This: Mol. Pharmaceutics 2022, 19, 3139–3152

ARTICLE

Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin

Frederico Martins¹ Sam G. Raney² | Masoud Jamei¹ | Sebastian Polak^{1,3}

Nikunjkumar Patel¹ | James F. Clarke¹ | Farzaneh Salem¹ | Sumit Arora¹ | Eleftheria Tsakalozou² | Omid Arjmandi-Tash¹ | Sinziana Cristea¹ | Priyanka Ghosh²

oharmaceutics

```
Article
```

Physiologically Based Pharmacokinetic Modeling of Transdermal Selegiline and Its Metabolites for the Evaluation of Disposition Differences between Healthy and Special Populations

Santosh Kumar Puttrevu 1.*, Sumit Arora 1, Sebastian Polak 1.2 and Nikunj Kumar Patel 1

- ¹ Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Sumit.Arora@certara.com (S.A.); sebastian.polak@certara.com (S.P.); nikunjkumar.patel@certara.com (N.K.P.)
- ² Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., 30-688 Krakow, Poland
- * Correspondence: santoshkumar.puttrevu@certara.com; Tel.: +44 (0) 114 460 0165

Received: 11 August 2020; Accepted: 28 September 2020; Published: 30 September 2020

Contents lists available at ScienceDirect

Journal of Pharmaceutical Sciences

SEVIER

journal homepage: www.jpharmsci.org

Article

Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism

Development and Qualification of a Physiologically Based Pharmacokinetic Model of Finasteride and Minoxidil Following Scalp Application Revised: 8 December 2020 Accepted: 29 December 2020

DOI: 10.1002/psp4.12600

REVIEW

Arran Hodgkinson¹

Khondoker A Received: 24 September 2020

Tariq Abdulla¹

Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1%

Eleftheria Tsakalozou | Andrew Babiskin | Liang Zhao

Mechanistic Modeling of In Vitro Skin Permeation and Extrapolation to In Vivo for Topically Applied Metronidazole Drug Products Using a Physiologically Based Pharmacokinetic Model

Sumit Arora,* James Clarke, Eleftheria Tsakalozou, Priyanka Ghosh, Khondoker Alam, Jeffery E. Grice, Michael S. Roberts, Masoud Jamei, and Sebastian Polak

Cite This: Mol. Pharmaceutics 2022, 19, 3139–3152

Integrating Mechanistic Modelling within the Generic Topical Drug Product Development Process

Workflow for maximising the impact of mechanistic models

Defffor Deffsc Deff_v Deffperm Deffsubcut Deff

Excipients penetration
 © Copyright 2021 Certara, L.P. All rights reserved.

gel, cream, lotion, paste, etc.	_	_	Deff _{form}	
Stratum Cornuem (SC) define cell shape/size, cell membr permeability, keratin bonding kine tortuosity/diffusivity, hair density/s	ane tics, iize	Tortuosity	Deffsc	
Viable Epidermis (VE) thickness/diffusivity, metabolism	CLve)	Deffve	
Dermis thickness/diffusivity, metabolism, blood flow	CL _{Derr}	, —	DeffDerm	
Receptor Volume BSA Binding Sampling/Flow	impling/ Flow	← - R	eceptor	
<i>vitro</i> Release	′Pe	ermea	ation Stu	udie

Understanding Q1, Q2 and Q3 properties of topical products

- Composition
- Drug Solubility in various phases
- Drying Rate (evaporation weight loss)
- Specific gravity
- Particle size (solid particles/droplets)
- Rheology
- Precipitation characterization
- Excipients penetration
 © Copyright 2021 Certara, L.P. All rights reserved.

CERTA

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

Key: ITEM PROCESS DATA

PROCESS

Formu	lation
Develop	oment

Model Development

Formulation Development

Key: ITEM PROCESS DATA

Key:

PROCESS

DATA

Formulation

Development

CERTARA

DATA

Key: ITEM PROCESS DATA

CERTARA

PROCESS

DATA

Key: ITEM PROCESS DATA

CERTARA

Key:

DATA

PROCESS

Key: ITEM PROCESS DATA

CERTARA

CERTARA

PROCESS

DATA

CERTARA

PROCESS

DATA

CERTARA

88

PROCESS

DATA

PROCESS

DATA

Key: PROCESS

DATA

ITEM PROCESS DATA

Key:

Key: ITEM PROCESS DATA

Key: ITEM PROCESS DATA

Key: ITEM PROCESS DATA

CERTARA

95

DATA

PROCESS

Key:

of Test

Challenge

DATA

PROCESS

Key:

Key:

PROCESS

Key:

PROCESS

PROCESS

Key:

PROCESS

Key:

PROCESS

Key:

PROCESS

Key:

PROCESS

Generic Drug Development Process and Investigative Virtual Bioequivalence

Upcoming Publication – in peer review

- Topicort Spray 0.25% Information on Q2 taken from patent *
- Mechanistic formulation model uses Q2 as input
 - Evaporation rate of Isopropyl alcohol can be predicted
- No information publicly available on Q3 parameters
 - Viscosity
 - Solubility
 - pH
 - Evaporation rate

Component	Primary/Secondary (% w/w)	Tertiary (% w/w)
Desoximetasone	0.25	0.33
Glyceryl oleate	0.9	1.17
Isopropyl alcohol	23.4	0.00
Isopropyl myristate	31.38	40.96
L-menthol	0.05	0.07
Mineral oil	44.03	57.47

• Drug Molecule

* Kisak, E. N., J; Kushwaha, A (2019). Compositions for Drug Delivery. U. S. P. A. Publication.

Commutation	
gel, cream, lotion, paste, etc.	Deff _{torm}
Stratum Cornuem (SC) define cell shape/size, cell membrane permeability, keratin bonding kinetics, tortuosity/diffusivity, hair density/size	Deff _{sc}
Viable Epidermis (VE) thickness/diffusivity, metabolism	
Dermis thickness/diffusivity, metabolism, blood flow	Deff _{Cerm}
Receptor Volume BSA Binding Sampling/Flow	' 🖛 – Receptor

In vitro Release/Permeation Studies

Understanding Q1, Q2 and Q3 properties of topical products

- Composition ٠
- Drug Solubility in various phases
- Drying Rate (evaporation weight loss)
- Specific gravity ٠
- Particle size (solid particles/droplets) ٠
- Rheology
- Precipitation characterization ٠
- **Excipients** penetration

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

*

© Copyright 2021 Certara, L.P. All rights reserved * Anissimov, Y. G. and M. S. Roberts (2011). "Modelling dermal drug distribution after topical application in human." Pharm Res 28(9): 2119-2129.

	1,	oput		
I	Formulation gel, cream, lotion, paste, etc.	<u>iput</u>	Deff _{form}	
	Stratum Cornuem (SC) define cell shape/size, cell membrane oermeability, keratin bonding kinetics, ortuosity/diffusivity, hair density/size	Tortuosity	Deffsc	
	Viable Epidermis (VE) hickness/diffusivity, metabolism		Deffve	
t	Dermis hickness/diffusivity, metabolism, blood flow	-Derm	DeffDerm	
	Receptor /olume 3SA Binding Sampling/Flow	🥙 🖛 Rec	eptor	
In vit	tro Release/Pe	ermeati	on Stuc	lies
Unde	rstanding Q1,	Q2 and	d Q3 pro	operties of
	topica	al produ	ucts	
C				

- Composition
- Drug Solubility in various phases
- Drying Rate (evaporation weight loss)
- Specific gravity ٠
- Particle size (solid particles/droplets) ٠
- Rheology
- Precipitation characterization ٠
- **Excipients** penetration

Component	Tertiary (% w/w)
Desoximetasone	0.33
Glyceryl oleate	1.17
Isopropyl alcohol	0.00
Isopropyl myristate	40.96
L-menthol	0.07
Mineral oil	57.47

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

109

*

© Copyright 2021 Certara, L.P. All rights reserved. * Anissimov, Y. G. and M. S. Roberts (2011). "Modelling dermal drug distribution after topical application in human." Pharm Res 28(9): 2119-2129.

<u>In</u>	<u>put</u>
Formulation gel, cream, lotion, paste, etc.	Deff _{torm}
Stratum Cornuem (SC) define cell shape/size, cell membrane permeability, keratin bonding kinetics, tortuosity/diffusivity, hair density/size	Deff _{sc} Tortuosity
Viable Epidermis (VE) thickness/diffusivity, metabolism	
Dermis thickness/diffusivity, metabolism, blood flow	m ← Deff _{Dern}
Receptor Volume Sampling/ BSA Binding Flow	← − Receptor

In vitro Release/Permeation Studies

Understanding Q1, Q2 and Q3 properties of topical products

- Composition
- Drug Solubility in various phases
- Drying Rate (evaporation weight loss)
- Specific gravity
- Particle size (solid particles/droplets)
- Rheology
- Precipitation characterization
- Excipients penetration
 © Copyright 2021 Certara, L.P. All rights reserved.

Component	Tertiary (% w/w)
Desoximetasone	0.33
Glyceryl oleate	1.17
Isopropyl alcohol	0.00
Isopropyl myristate	40.96
L-menthol	0.07
Mineral oil	57.47

Dermal Formulation Options (Solution)

* Constituents of the continuous phase of the selected formulations.

** fni is calculated from the formulation pH assuming Henderson Hasselback, Caution should be used when simulation non-aqueous vehicles as HH may not apply. ‡ Density of the entire vehicle must be defined in order to calculate Molar Volume.

110

+ Applied as a scalar to Ksc:vand Ksebum:v

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

* Anissimov, Y. G. and M. S. Roberts (2011). "Modelling dermal drug distribution after topical application in human." Pharm Res 28(9): 2119-2129.

In vitro Release/Permeation Studies

Understanding Q1, Q2 and Q3 properties of topical products

- Composition
- Drug Solubility in various phases
- Drying Rate (evaporation weight loss)
- Specific gravity
- Particle size (solid particles/droplets)
- Rheology
- Precipitation characterization
- Excipients penetration
 © Copyright 2021 Certara, L.P. All rights reserved.

Component	Tertiary (% w/w)
Desoximetasone	0.33
Glyceryl oleate	1.17
Isopropyl alcohol	0.00
Isopropyl myristate	40.96
L-menthol	0.07
Mineral oil	57.47

Dermal Formulation Options (Solution)

* Constituents of the continuous phase of the selected formulations.

** fni is calculated from the formulation pH assuming Henderson Hasselback, Caution should be used when simulation non-aqueous vehicles as HH may not apply. ‡ Density of the entire vehicle must be defined in order to calculate Molar Volume.

111

+ Applied as a scalar to Ksc:vand Ksebum:v

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

* Anissimov, Y. G. and M. S. Roberts (2011). "Modelling dermal drug distribution after topical application in human." Pharm Res 28(9): 2119-2129.

- **Precipitation characterization**
- **Excipients** penetration © Copyright 2021 Certara, L.P. All rights reserved.

Dermis

Receptor Volume

Q1 – Qualitative Sameness Q2 – Quantitative Sameness Q3 – Microstructure sameness

* Anissimov, Y. G. and M. S. Roberts (2011). "Modelling dermal drug distribution after topical application in human." Pharm Res 28(9): 2119-2129.

CERT

112

Cancel

Upcoming Publication – in peer review

Effect of Dose Selection on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose -3.5 sprays per 1 cm²

Viscosity:	Solubility :
RLD = 100 cP	RLD = 0.55 mg/ml
Lower Bound = $1cP$	Lower Bound = 0.4 mg/ml
Upper Bound = $100\ 000\ cP$	Upper Bound = 0.7 mg/ml

Upcoming Publication – in peer review

Effect of **Dose Selection** on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose 3.5 sprays per 1 cm^2

Viscosity:	Solubility :
RLD = 100 cP	RLD = 0.55 mg/ml
Lower Bound = $1cP$	Lower Bound = 0.4 mg/ml
Upper Bound = 100 000 cP	Upper Bound = 0.7 mg/ml

Upcoming Publication – in peer review

Effect of Dose Selection on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose 3.5 sprays per 1 cm^2

Viscosity:	Solubility :
RLD = 100 cP	RLD = 0.55 mg/ml
Lower Bound = $1cP$	Lower Bound = 0.4 mg/ml
Upper Bound = 100 000 cP	Upper Bound = 0.7 mg/ml

Upcoming Publication – in peer review

Effect of **Dose Selection** on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- Middle dose -1 spray per 2 cm² 2)
- Default dose -1 spray per 1 cm² 3)
- IVPT dose -3.5 sprays per 1 cm² 4)

Viscosity:	Solubility :
RLD = 100 cP	RLD = 0.55 mg/ml
Lower Bound = $1cP$	Lower Bound = 0.4 mg/ml
Upper Bound = $100\ 000\ cP$	Upper Bound = 0.7 mg/ml

mg/ml

Upcoming Publication – in peer review

Effect of Dose Selection on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose 3.5 sprays per 1 cm^2

Plasma

125- 100-

Viscosity:

RLD = 100 cP

Lower Bound = 1cP

Upper Bound = $100\ 000\ cP$

Solubility : RLD = 0.55 mg/ml Lower Bound = 0.4 mg/ml Upper Bound = 0.7 mg/ml

T/R

%

Upcoming Publication – in peer review

Effect of Dose Selection on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose 3.5 sprays per 1 cm^2

RLD = 100 cP

Lower Bound = 1cP

Upper Bound = $100\ 000\ cP$

Solubility : RLD = 0.55 mg/ml Lower Bound = 0.4 mg/ml Upper Bound = 0.7 mg/ml

Upcoming Publication – in peer review

Effect of Dose Selection on formulation parameter sensitivity

- 1) Low dose -1 spray per 10 cm²
- 2) Middle dose -1 spray per 2 cm²
- 3) Default dose -1 spray per 1 cm²
- 4) IVPT dose 3.5 sprays per 1 cm^2

Plasma

 $\begin{array}{c}
125 \\
100 \\
80 \\
100 \\
80 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\
100 \\$

Viscosity:

RLD = 100 cP

Lower Bound = 1cP

Upper Bound = $100\ 000\ cP$

Solubility : RLD = 0.55 mg/ml Lower Bound = 0.4 mg/ml Upper Bound = 0.7 mg/ml

Thank you

James F Clarke PhD

Senior Research Scientist

CERTARA

University of Michigan