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Situations where no single PK model may be 
appropriate for BE analysis
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• No prior model

• Can not assume true model

• Identifiability issues

• Avoid estimation bias and overestimation of precision

Model Averaging
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Assessing the QT prolongation potential of a drug is typically done based on pivotal
safety studies called thorough QT studies. Model‐based estimation of the drug‐
induced QT prolongation at the estimated mean maximum drug concentration could
increase efficiency over the currently used intersection‐union test. However, robust-
ness against model misspecification needs to be guaranteed in pivotal settings. The
objective of this work was to develop an efficient, fully prespecified model‐based
inference method for thorough QT studies, which controls the type I error and pro-
vides satisfactory test power. This is achieved by model averaging: The proposed
estimator of the concentration‐response relationship is a weighted average of a para-
metric (linear) and a nonparametric (monotonic I‐splines) estimator, with weights
based on mean integrated square error. The desired properties of the method were
confirmed in an extensive simulation study, which demonstrated that the proposed
method controlled the type I error adequately, and that its power was higher than
the power of the nonparametric method alone. The method can be extended from
thorough QT studies to the analysis of QT data from pooled phase I studies.
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1 | INTRODUCTION

Thorough QT studies have been an integral part of most drug development programs since the establishment of the ICH E14
guideline in 2005,1 which was implemented as a regulatory response to market withdrawals of drugs due to increased
proarrhythmic risk. The guideline stresses the need for assessment of the delayed cardiac repolarization potential, as evidenced
by prolongation of the QTwave, early in clinical development and provides recommendations regarding the design and analysis
of clinical studies designed to assess this risk. In a nutshell, a regulatory flag is raised if a QT prolongation exceeding 10 ms is
observed at any of the postdose time points of the thorough QT study and implies notably enhanced electrocardiogram (ECG)
monitoring in subsequent studies.

Thorough QT studies have been the source of much debate before and since their routine implementation. The operating
characteristics of the recommended analysis method, the intersection‐union test, have often been challenged,2,3 notably because
of a high false positive rate, which is especially problematic given the low cost‐effectiveness of thorough QT studies.4 Several
authors advocate the use of concentration‐response analysis to evaluate proarrhythmic risk, which can increase the power of the
test as well as improve the understanding of the exposure‐effect relationship.5,6 A further advantage of concentration‐response
analysis is that it is straightforward to use to analyze pooled data from different phase I studies.7-9 This is particularly relevant
given that replacement of the thorough QT study by QT assessment from early phase clinical studies is currently under inves-
tigation.10,11 In contrast, the classical intersection‐union test cannot be easily extended to these situations.
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Abstract. In drug development, pharmacometric approaches consist in identifying via a
model selection (MS) process the model structure that best describes the data. However, making
predictions using a selected model ignores model structure uncertainty, which could impair
predictive performance. To overcome this drawback, model averaging (MA) takes into account
the uncertainty across a set of candidate models by weighting them as a function of an
information criterion. Our primary objective was to use clinical trial simulations (CTSs) to
compare model selection (MS) with model averaging (MA) in dose finding clinical trials, based
on the AIC information criterion. A secondary aim of this analysis was to challenge the use of
AIC by comparing MA and MS using five different information criteria. CTSs were based on a
nonlinear mixed effect model characterizing the time course of visual acuity in wet age-related
macular degeneration patients. Predictive performances of the modeling approaches were
evaluated using three performance criteria focused on the main objectives of a phase II clinical
trial. In this framework, MA adequately described the data and showed better predictive
performance than MS, increasing the likelihood of accurately characterizing the dose-response
relationship and defining the minimum effective dose. Moreover, regardless of the modeling
approach, AIC was associated with the best predictive performances.

KEY WORDS: dose-response relationship; model averaging; model selection; nonlinear mixed effect
models.

INTRODUCTION

Finding the right dose remains a critical step in clinical
drug development (1). Selecting too high a dose increases the
risk of toxicity, while too low a dose may reduce the
treatment efficacy. Uncertainty concerning the selected dose
can lead to unsuccessful trials and delays in regulatory
approval. Between 2000 and 2012, one of the greatest causes
of failure of phase 3 submissions was uncertainty related to
dose selection (2).

To tackle this challenge, 150 delegates from industry,
academia, and regulatory bodies representing different scien-
tific disciplines attended a dose finding workshop under the
leadership of the European Medicines Agency (EMA) (3).

Among the different discussions, the workshop reiterated the
following statement of the International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use
(ICH) E4 guidance (4): Bdose finding should rely on model-based
estimation rather than hypothesis testing via pairwise comparisons.^
Hence, there is an increased interest in innovative approaches to
accurately characterization of the dose-response relationship (5).
Approaches based on models, such as nonlinear models, provide a
functional relationship between dose and response. Compared to a
pairwise analysis, nonlinear models allow analysis of all the data
simultaneously and interpolation between doses (6).

Based on recommendations from health authorities, the
model should be specified prior to data analysis. However,
before phase 2, little is known regarding the dose-response
relationship. The Multiple Comparison Procedure – Modeling
(MCP-MOD) method (7,8) addressed this issue by using a
predefined set of candidate models for the description of the
dose-response relationship. Once the evidence of a drug
effect is established at the MCP step using multiple contrast
tests, a MOD step is used to estimate the dose to be brought
into the confirmatory phase.
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Abstract Population model-based (pharmacometric)
approaches are widely used for the analyses of phase IIb

clinical trial data to increase the accuracy of the dose

selection for phase III clinical trials. On the other hand, if
the analysis is based on one selected model, model selec-

tion bias can potentially spoil the accuracy of the dose

selection process. In this paper, four methods that assume a
number of pre-defined model structure candidates, for

example a set of dose–response shape functions, and then

combine or select those candidate models are introduced.
The key hypothesis is that by combining both model

structure uncertainty and model parameter uncertainty

using these methodologies, we can make a more robust
model based dose selection decision at the end of a phase

IIb clinical trial. These methods are investigated using

realistic simulation studies based on the study protocol of
an actual phase IIb trial for an oral asthma drug candidate

(AZD1981). Based on the simulation study, it is demon-

strated that a bootstrap model selection method properly
avoids model selection bias and in most cases increases the

accuracy of the end of phase IIb decision. Thus, we rec-
ommend using this bootstrap model selection method when

conducting population model-based decision-making at the

end of phase IIb clinical trials.

Keywords Model averaging ! Model selection !
Pharmacometrics ! Phase IIb clinical trial ! Dose finding

study ! Mathematical modelling ! Dose–effect relationship

Introduction and background

Quantifying the probability of achieving the targeted effi-

cacy and safety response is crucial for go/no-go investment
decision-making in a drug development program. This is

particularly crucial when analyzing phase IIb (PhIIb) dose-

finding studies to select the phase III dose(s) given the
costs of phase III studies.

It has previously been shown that population model-

based (pharmacometric) approaches can drastically
increase the power to identify drug effects in clinical trial

data analysis compared to conventional statistical analysis

(e.g., [1]). On the other hand, the model-based approach
can be hindered by model selection bias if a single model

structure is assumed and used for the analysis (e.g., [2, 3]).
There have been several attempts through model averaging

and model selection to weaken the model structure

assumptions by considering multiple possible model can-
didates in the analysis [4–9].

In this paper, we introduce four methods that assume a

number of pre-defined model candidates and then combine
or select those candidate models in different ways to make

predictions and to account for uncertainty in those predic-

tions. The first method is ‘‘simple’’ model selection where a
set of model structures are pre-specified and a model is
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Model averaging approaches developed for BE

• Model selection
• Bootstrap model selection (BMS)
• Conventional model averaging (MA)
• Bootstrap model averaging
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Conventional model averaging (MA)
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BE data

Model 1 
fitting

Model M 
fitting

Uncertainty
Method: 

Cov, SIR, boot

Uncertainty
method : 

Cov, SIR, boot

Pop. sim 1

Pop. sim Nw1

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Pop. sim 1

Pop. sim NwM

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Distribution of 
ratio mean

90% CI of
ratio mean

BE Conclusion

Model 2 
fitting X

Or weight<5%

Sampling from 
parameter 
uncertainty

Measure individual 
Cmax, AUC from 

NONMEM

Weight (wm) 
is calculated 

based on 
AIC

Failed identifiability test, LRT

Modeling Uncertainty 
estimation Simulation Conclusion



Conventional model averaging (MA)

7

BE data

Single Model BE analysis
Uncertainty method: cov, SIR, bootstrap

Mean ratios from 
N*wm simulations Model 1

Model 2

Single Model BE analysis
Uncertainty method: cov, SIR, bootstrap

Model M

Or weight<5%

Failed identifiability test, LRT
X Distribution of 

ratio mean

90% CI of
ratio mean

BE Conclusion

Model averaging

� Model averaging (MA):

• Allows measuring model uncertainty by weighting a set of M candidate models in function of an 
information criteria[1] (e.g. AIC)

• Applications to NL[2,3] and NLME models[4,5,6]

o Concentration-effect relationship

o Dose finding studies

5
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[4] Dosne et al. Stat Med 2016
[5] Buatois et al. AAPS 2018
[6] Aoki et al. JPKPD 2017

[1] Buckland et al. Biometrics 1997
[2] Ganusov Front Microbiol 2016
[3] Evans et al. Trends Ecol Evol 2013



Bootstrap model selection (BMS)
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BE data

Bootstrap
Dataset 1

Bootstrap
Dataset N

Model 1

Model 2

Model M

Model 1

Model 2

Model M

Model 1

Model 2

Model M

AIC=…
AIC=…

AIC=…

AIC=…
AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Distribution of 
ratio mean

90% CI of
ratio mean

BE Conclusion



Ophthalmic drug product 
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http://www.lumigan.com/Resources/How-to-Apply

Agrahari, Drug Deliv. And Transl. Res.  2016

Affecting factors
• Solution drainage (naso-lacrimal)

• Lacrimation

• Tear turnover

• Tear dilution

• Conjunctival absorption

• Blinking

• …

Low Bioavailability

High variation

http://www.lumigan.com/Resources/How-to-Apply


FDA guidance regarding bioequivalence of 

ophthalmic drug products

Product-specific BE recommendations (draft guidance)

• Waiver (solution and Q1/Q2 products)

• Studies that demonstrate BE

– Clinical endpoint study

– PK study in aqueous humor

– In vitro study

• Bacterial kill rate study

• Q3 characterization

10
Choi, Lionberger, 2016, AAPS Journal



PK study in aqueous humor

• Subjects: patients undergoing indicated cataract 
surgery

• Drug administration:
– prior to surgery

• Only one single sample collected at assigned 
time point

• Crossover or parallel study
• Criteria: 90% CI of AUC0-t and Cmax ratio is within 

(0.8, 1.25)
• SD may be done via bootstrapping technique 

or a parametric method

11
Agrahari, Drug Deliv. And Transl. Res.  2016
Choi, Lionberger, 2016, AAPS Journal

Aqueous 
humor
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Bootstrap NCA BE method

12

Original data

Bootstrap ID 

stratified at time after 

dose

Bootstrapped data 

– individual Conc

Cmax ratio(1)=

Tmax ratio(1)=

AUC0-t1 ratio(1)=

….

AUC0-tk ratio(1)=

Calculate geometric mean 

of concentrations for each 

time point and treatment

Calculate Cmax, 

Tmax, and AUCt

(Trapezoidal method)

Calculate arithmetic 

mean parameters, std, 

and 90%CI

90% CI of ratio:

Cmax, AUC0-t1 ,

…..,  AUC0-tk 

BE

Bootstrapped data 

– Conc mean

Cmax ratio(n)=

Tmax ratio(n)=

AUC0-t1 ratio(n)=

….

AUC0-tk ratio(n)=

90%CI = mean ± 1.645*SD
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Application of model-based method: 
Identifiability problem

13

Identifiability
Problem

Ophthalmic drug 
Product BE data

• High variation

• Sparse data

Possible solution:
Model averaging

Ophthalmic product
BE data

Central
(V)

CLKaAbsorptionDose

Random effect may not be identifiable.
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Simulation study flowchart

14

Model

Study
design

Simulated
Data

Model averaging
Methods

BE 
conclusion

Type I error:
Power:

!"#
!$%$&'

Simulated
Data

BE 
conclusion

Simulated
Data

BE 
conclusion

Candidate
Model 1

Simulation Num=500

Candidate
Model 2

Candidate
Model M



Ophthalmic drug product BE simulation study
crossover study
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Study design
• Each subject has 2 treatments 

with the same sampling times

• 5 groups: 0.25, 1.5, 5, 15, 24

• 24 subject/group 

• Total subject No=120

Central
(V)

CLKaAbsorptionDose

IIV (!" = 0.25) on all parameters

IOV (!"= 0.0225) on all parameters

Proportional residual error ((" = 0.01) 



Crossover study
Weight distribution among models
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KATRT x x x x x x x x x x x
IIV-CL x x x x x x x x x x x x x x x x
IIV-V x x x x x x x x x x x x
IIV-KA x x x x x x x x x x
IIV-F x x x x x x x x x x x x

Estimated OMEGA number 4 3 3 3 3 2 2 2 1 1 1 4 3 3 3 3 2 2 2 1 1 1

Conventional
Model Averaging

Bootstrap 
Model Selection
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Crossover study:
Type I error
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Ophthalmic drug product BE simulation study
Parallel study

23

Study design
• Each subject: 1 treatment and 1 sample

• 2 treatments: reference and test

• 5 potential sampling points: 
0.5, 1, 5, 15, 24

• 2 treatment* 5 sampling=10 group

• 48 subject/group 

• Total subject No.=480

Central
(V)

CLKaAbsorptionDose

IIV (!" = 0.25) on all parameters

Proportional residual error ((" = 0.01) 



KATRT x x x x x x x x
IIV-CL x x x x x x x x
IIV-V x x x x
IIV-KA x x x x
IIV-F x x x x

Estimated OMEGA number 2 2 2 1 1 1 1 0 2 2 2 1 1 1 1 0

Parallel study
Weight distribution among models

24

Conventional
Model Averaging

Bootstrap 
Model Selection
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True ratio = 1.25
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True ratio = 1.25
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True ratio = 1.25

●

●

●

●

●

●

0
1
2
3
4
5
6
7
8
9

10

AUCinf AUClast Cmax

Ty
pe

 I 
er

ro
r (

%
)

method
●

●

Conventional MA−Cov matrix
Conventional MA−SIR
Bootstrap model selection
Bootstrap NCA

Parallel BE (n=480)
Type I error: FTRT=1.25

Type I error
Type I error: Pr(conclude Ha: ratio <1.25 | true H0: ratio ≥ 1.25)
Type II error: Pr(conclude H0: ratio≤0.8 | true Ha: ratio>0.8)

– Type II error

●

●

●

●

●

●

0
1
2
3
4
5
6
7
8
9

10

AUCinf AUClast Cmax

Ty
pe

 I 
er

ro
r (

%
)

method
●

●

Conventional MA−Cov matrix
Conventional MA−SIR
Bootstrap model selection
Bootstrap NCA

Parallel BE (n=480)
Type I error: FTRT=1.25



AU
C

last
C

m
ax

50 60 70 80 90 100 110 120 130140150160
Test/Reference ratio (%)

Parallel study: Power

29

True ratio = 0.9

Power
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True ratio = 0.9
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Power: Pr(conclude Ha: ratio>0.8 | true Ha: ratio>0.8)
Type II error: Pr(conclude H0: ratio ≥ 1.25 | true Ha: ratio <1.25)

True ratio = 0.9

Power – Type II error
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Power: Pr(conclude Ha: ratio>0.8 | true Ha: ratio>0.8)
Type II error: Pr(conclude H0: ratio ≥ 1.25 | true Ha: ratio <1.25)

True ratio = 0.9
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Simulation study summary

Power: Crossover design > parallel design

Power: Model-based methods > Bootstrap NCA

Bootstrap NCA’s power: AUClast > Cmax

Performance (type I error): BMS > Conventional MA
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Conventional MA vs. BMS
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BE data

Model 1 
fitting

Model M 
fitting

Model 2 
fitting Weighting

BE data

Bootstrap
Dataset 1

Bootstrap
Dataset N

Model 1

Model 2

Model M

Model 1

Model 2

Model M

Model 1

Model 2

Model M

AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

AIC=…

Conventional MA
Weighting is based on original dataset

Averaging over model uncertainty

BMS
Weighting is based on bootstrapped datasets

Averaging over
model uncertainty & sampling uncertainty
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