

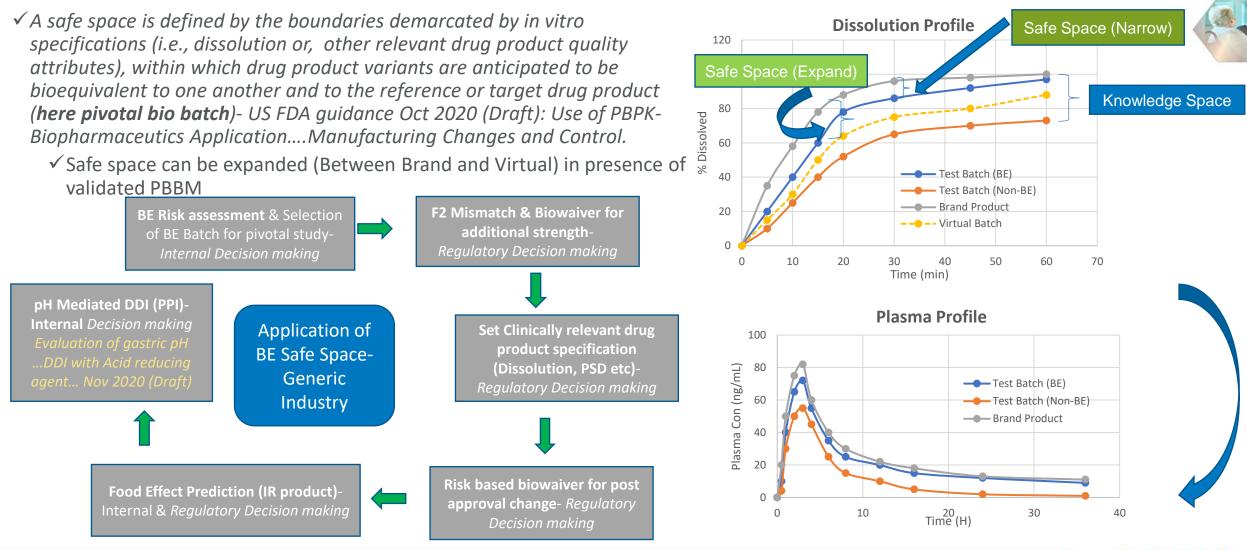
Approaches in Establishing BE Safe Space for Oral Solid Dosage Form FDA-CRCG 2022 workshop: Best Practices for Utilizing Modeling Approaches to Support Generic Product Development

Sumon Chakraborty (schakra1@apotex.co.in) Apotex Inc

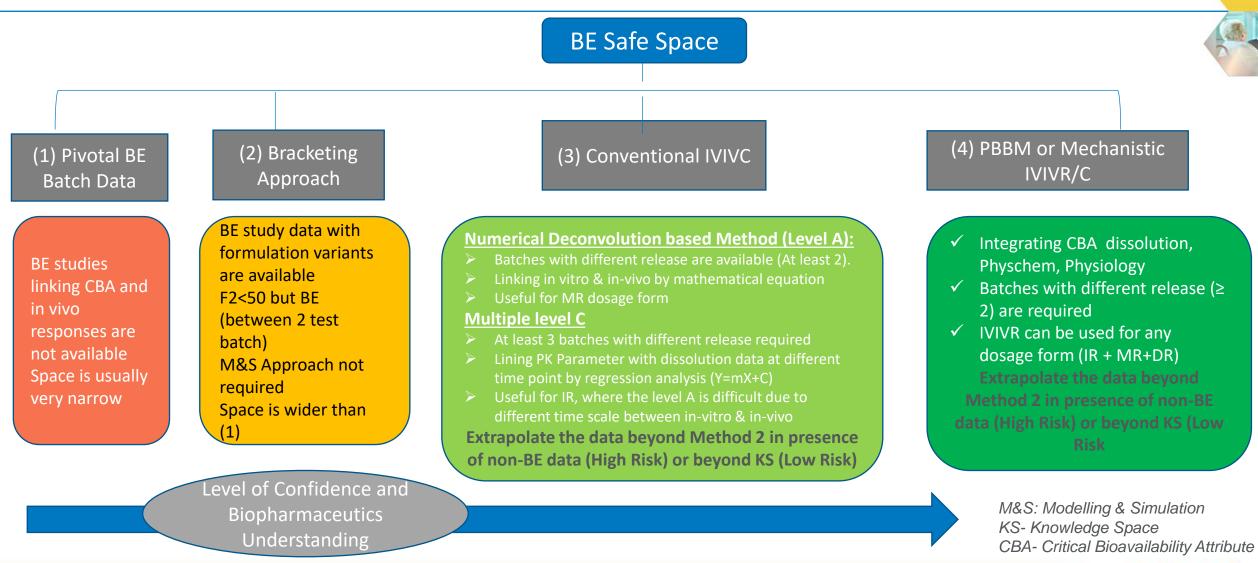
October 27-28th 2022

Disclaimer

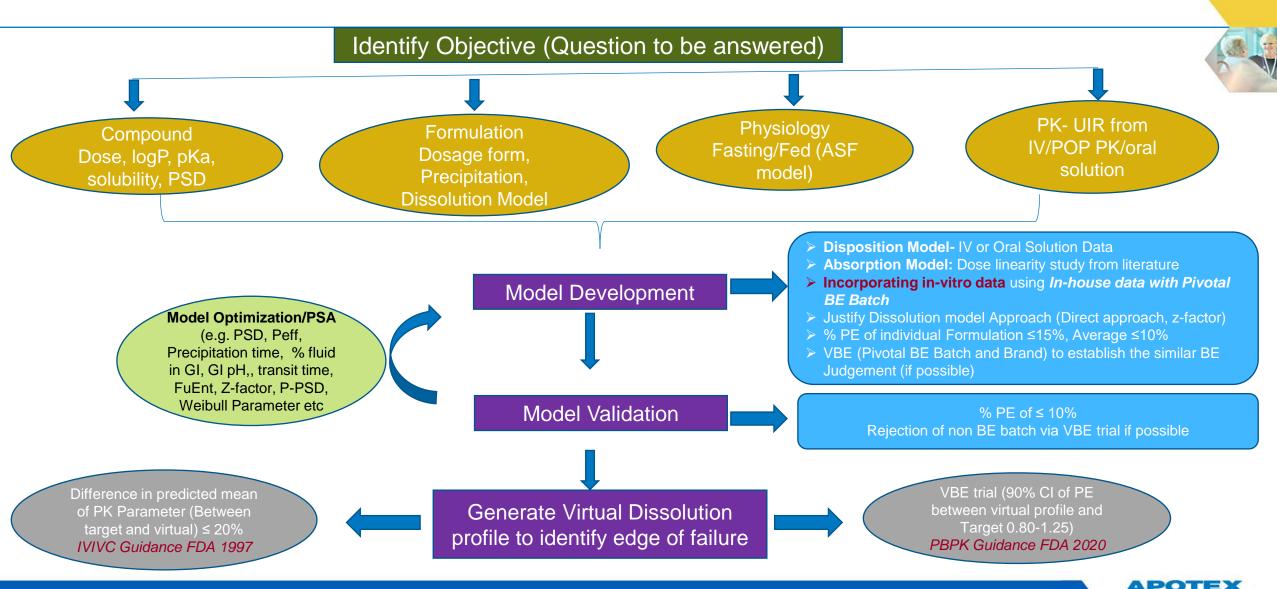
The views expressed in this presentation are my own and do not represent the view of my employer.



- Different Methods to Establish BE Safe Space
 - *****Basic PBBM Workflow
 - *****Different Approach to Integrate In-vitro Data
- **Case Study # 1: BE Safe Space to Supersede F2**
- Case Study # 2: BE Safe Space to Wide Dissolution Specification- CRDS(Clinically Relevant Dissolution Specification)
- **Summary**



What is BE Safe Space and Application of Safe Space


APOTEX

Different Methods to Establish BE Safe Space

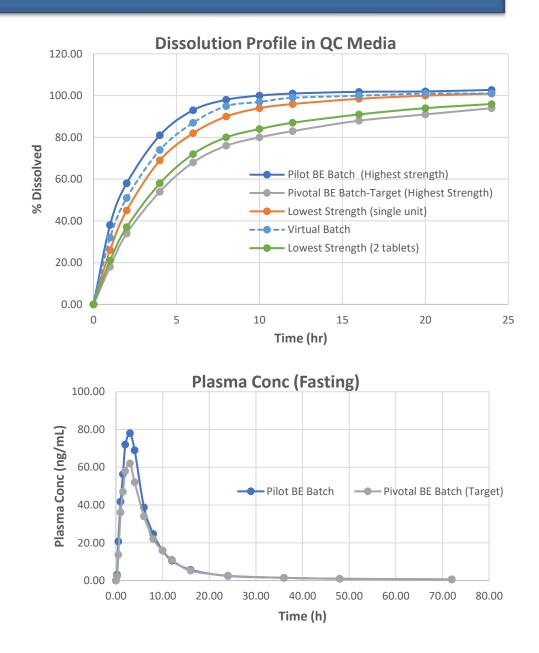
PBBM Workflow

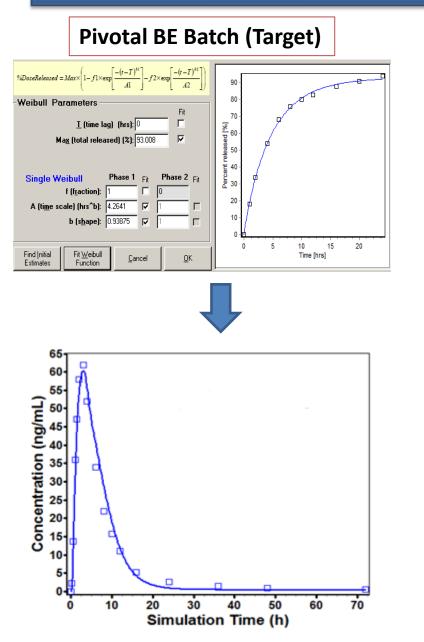
patient affordability

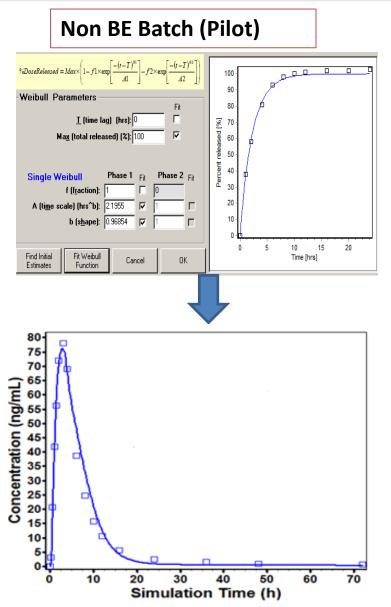
Different Approach to Integrate In-vitro Data

Method	Pros/Eligibility	Cons/Limitation
Direct Input	 No Additional fitting Dissolution is independent of dissolution Condition (IR with BCS-I/III or ER osmotic system) 	 Not Mechanistic and may not be suitable for IR with BCS-II/IV Not suitable for VBE trial
Weibull Model	 Fitting dissolution data into mathematical function (up to 3 phase) ER Tablet and IR product with BCS-I/III Useful for generating virtual dissolution profile (maintaining similar shape) 	 Not Mechanistic can not be used for IR with BCS-II/IV Assume 1:1 correlation
Johnson Model	 Impact of API PSD can be assessed (Different kinetic solubility between different API polymorph/PSD) Mechanistic 	 Formulation factor can not be assessed
Z-Factor	 Fitting Z factor (dissolution rate) to the dissolution data IR with BCS II/IV Constant z factor and pH vs Z factor Fitting initial point is a good approach- define the rate Useful for generating virtual dissolution profile 	 Can not fit dissolution data with biphasic dissolution Can not fit Data with lag phase/plateau (coning) API PSD is ignored
P-PSD	 Extract PSD from formulation and use as input parameter using Johnson model Can fit biphasic dissolution (explain both rise and plateau) 	 Complex calculation-need validation

Selection of Dissolution Model should be based on biopharmaceutics understanding and not based on best fitting

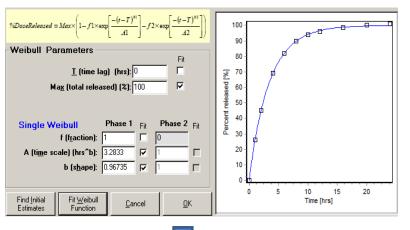



Case Study # 1: BE Safe Space to Supersede F2

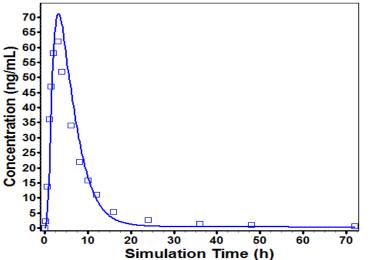

Background Information

- ✓ Formulation: Extended Release Tablet
- ✓ Available Strength: Two Strengths
- ✓ BE study was performed on highest strength and biowaiver was applied for the lowest strength
- ✓ Highest strength (Pivotal BE batch) vs lowest strength dissolution is NOT Similar (F2<50)- Strength dependent dissolution
- ✓ Objective to develop a PBBM to justify F2<50 is not clinically relevant</p>
 - ✓ Highly soluble and highly permeable drug substance (BCS-I)
 - \checkmark PK is linear between two strength
- ✓ Available Batches for model development & Validation: Two (Pivotal BE Batch, non BE Batch- Pilot Batch)
 - Technology used in manufacturing both batches are same (Matrix) with different concentration of HPMC- Same release mechanism
- ✓ Rank order relation
- ✓ Dissolution Profile between Target and Virtual Profile is the BE safe space- F2 is too stringent criteria

Model Development, Validation (Integrating Dissolution Data)



Parameter	Source		
log P	ADMET		
рКа	Literature		
Solubility (mg/mL)	Measured		
Caco-2 Papp (10-6 cm/s)	Literature		
Peff (10-4 cm/s)	Converted from Papp		
Particle size (μ)	Gastroplus Default		
Precipitation Time (s)	Gastroplus Default		
Physiology	Default Fasting with an exception of Intestinal transit time		
CL (L/h/kg)			
Vc (L/kg)			
K12 (1/h)	Fitting an oral solution		
k21 (1/h)			
B2P	Literature		
Fup Literature			
Dissolution Model Weibull Model (Single Parameter) Dosage Form- CR Integral Tablet			

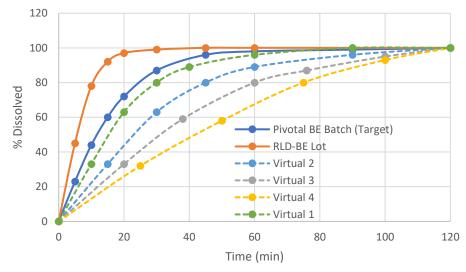

Model Development and Validation					
	РК	Observed	Predicted	% PE	
Pivotal BE	Cmax	60.3	62	2.82	
Batch (Target)	AUCt	509	478	6.09	
Non-BE	Cmax	78	76	2.56	
Batch (Pilot)	AUCt	586	569	2.90	
Cmax 2.5					
Average	AUCt		4.5		
Individual PE <15% and Average PE <10%					

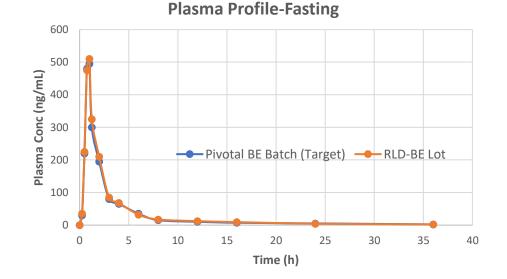
Model Application (Integrating Dissolution Data)

Virtual Batch

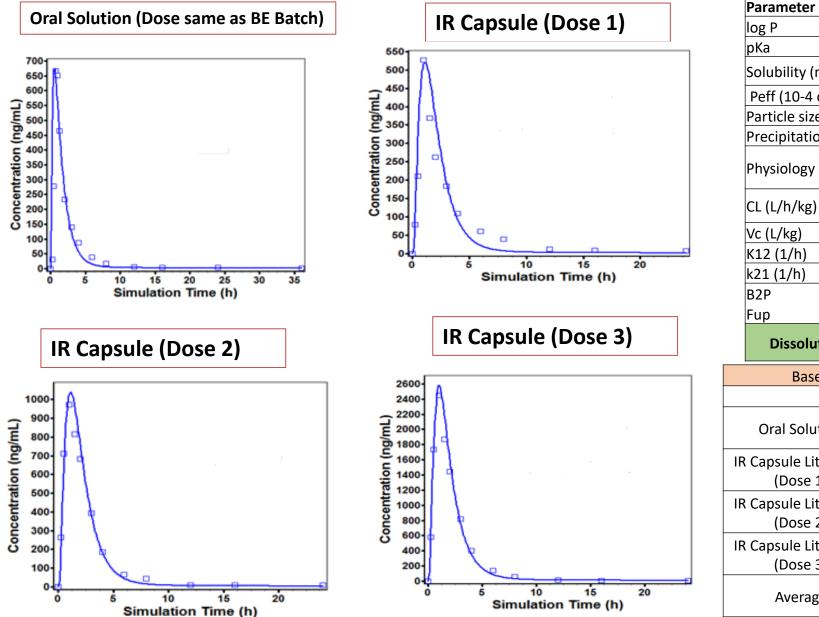
- ✓ Dissolution profile of lowest strength (single unit) is the worst case
- Dissolution matches when lowest strength (2 units) compared against highest strength Pivotal batch
- ✓ PK is linear between lowest & highest strength
- ✓ Highest strength data can be extrapolated to lowest strength
- ✓ PBBM supersede F2 criteria

PK Parameter	Target Predicted Data (R)-Lower Bound	Virtual Batch Predicted Data (T)-Upper Bound	T/R (%)
C _{max}	60	71	118
AUC _t	478	489	103

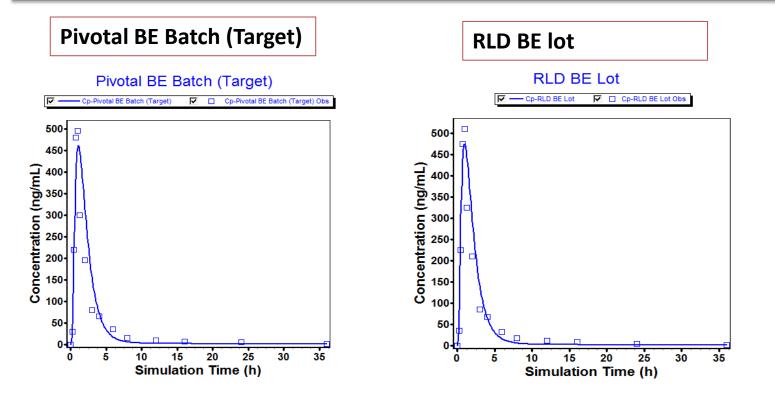

Conclusion: Dissolution profile between Lower and higher strength are anticipated to be Bioequivalent (falls within safe space)


Case Study # 2: BE Safe Space to Wide Dissolution Specification- CRDS (Clinically Relevant Dissolution Specification)

Background Information


- ✓ Formulation: IR Capsule
- ✓ Available Strength: 2 strengths
- \checkmark BE study was performed on highest strength
- ✓ Dissolution SPEC was set at Q=80% in 45 minutes (Agency recommend to tight it to Q=80% in 30 minutes)
- ✓ Objective to develop a PBBM to set the clinically relevant dissolution specification (Q=80% in 45 minutes)
- ✓ Highly soluble and moderate permeable drug substance (BCS-III)
- ✓ Available Batches for model development & Validation: Literature (Oral solution, 3 IR capsule at different dose) and Pivotal BE Study data (Pivotal BE Batch and RLD)
 - $\checkmark\,$ Dissolution is not rate limiting
 - ✓ BE with 2 test formulation with rank order was not available
- Virtual profiles were created by using different scale factor to Pivotal BE batch data (Virtual 1, Virtual 2, Virtual 3, Virtual 4- 80% in 30 min, 45 min, 60 min and 75 minutes respectively
- ✓ Dissolution Profile between Target and Virtual Profile 2 is the BE safe space- CRDS (Q =80% in 45 minutes justified)

Model Development & Validation-Literature Data (No Dissolution Data)

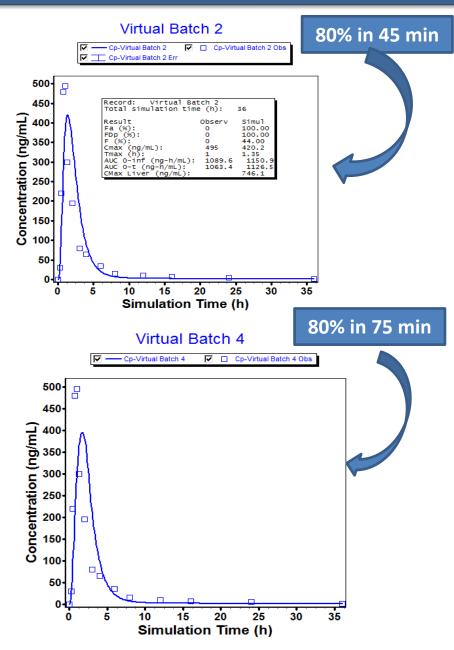


Parameter	Source
log P	ADMET
рКа	Literature
Solubility (mg/mL)	Measured
Peff (10-4 cm/s)	Fitting Oral Solution
Particle size (μ)	Gastroplus Default
Precipitation Time (s)	Gastroplus Default
Physiology	Default Fasting
CL (L/h/kg)	
Vc (L/kg)	Fitting an IV Infusion
K12 (1/h)	
k21 (1/h)	
B2P	Literature
Fup	Literature

Dissolution Model: Johnson; Dosage form- IR Capsule

Baseline Model Development & Validation-Literature				
	РК	Observed	Predicted	% PE
Oral Solution	Cmax	666	674	1.20
Oral Solution	AUCt	1338	1324	1.05
IR Capsule Literature	Cmax	526	520	1.14
(Dose 1)	AUCt	1462	1341	8.28
IR Capsule Literature (Dose 2)	Cmax	973	1039	6.78
	AUCt	2807	2682	4.45
IR Capsule Literature	Cmax	2447	2581	5.48
(Dose 3)	AUCt	6081	6037	0.72
Average	Cmax	3.65		
Average	AUCt	3.62		
Individual PE <15% and Average PE <10%				

Model Development & Validation-In-house Data (Integrating Dissolution Data)


PK Parameter	Observed Da	Predicted T/R		
	T/R	Lower Cl	Upper Cl	
Cmax	96	90	106	98
AUCt	103	97	107	100

Same BE judgement integrating the dissolution data- Bio-predictive

Parameter	Source	
log P	ADMET	
рКа	Literature	
Solubility (mg/mL)	Measured	
Peff (10-4 cm/s)	Fitting Oral Solution	
Particle size (µ)	Gastroplus Default	
Precipitation Time (s)	Gastroplus Default	
Physiology	Default Fasting	
CL (L/h/kg)		
Vc (L/kg)	Fitting an IV Infusion	
K12 (1/h)		
k21 (1/h)		
B2P	Literature	
Fup Literature		
Dissolution Model: Direct Input; Dosage form- CR Dispersed		

Model Development and Validation with In-house BE data (Pivotal)-Integrating Dissolution Data							
	PK Observed Predicted % PE						
Pivotal BE Batch	Cmax	495	460	7			
(Target)	AUCt	1063	1126	5.93			
	Cmax	510	475	6.86			
RLD (BE lot)	AUCt	1113	1126	1.17			
Average	Cmax	7					
Average	AUCt	3.5					
Individual PE <15% and Average PE <10%							

Model Application (Integrating Dissolution Data)

- ✓ Integrating the dissolution data of the virtual Batches as direct input
- ✓ Dissolution profile between the Target & Virtual 2 was set as safe space
- Expanding safe space beyond the knowledge space is OK
 - ✓ Low Biopharmaceutics risk considering the BCS –III/IR product and dissolution is not rate limiting
- ✓ PK is linear and increase mode confidence using data from different dosage form and dose
- BE safe space can be utilised for the commercial batch manufacturing
- Q=80% in 45 minutes anticipated to be Bioequivalent was set as CRDS

אוס	T/R (T- Virtual Batches, R- Pivotal BE Batch)				
РК	Virtual 1	Virtual 2	Virtual 3	Virtual 4	
Cmax	98	91	85	84	
AUCt	100	100	100	100	
Spec	80% in 30 min	80% in 45 min	80% in 60 min	80% in 75 min	
All virtual Batches are anticipated to be BE based on Min/Max (Cmax and					
AUC) <20%					
Virtual 3 and 4 is towards edge of failure considering the upper and lower CI and ISCV from Pivotal study					

- In vitro data can be integrated by mechanistic/non mechanistic way
- Best Practice to use the P_{eff} by fitting an oral solution plasma profile
- PSA for Physiological parameter are often useful to capture the accurate Tmax/absorption for MR products.
- BE safe space can be extended beyond knowledge safe space for low biopharmaceutics risk product (BCS-I/III IR)
- BE data of more than one test formulation (including non-BE batch) may not be available all the time.
- BE safe space useful for product lifecycle management.
- Min/max <20% or Virtual BE trial along with sensitivity analysis to establish the BE safe space

References

- Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations- US FDA Sep 1997
- The Use of Physiologically Based Pharmacokinetic Analyses Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls Guidance for Industry- US FDA Oct 2020
- Sandra Suarez-Sharp. Application of clinically relevant dissolution testing: Workshop Summary Report. The AAPS Journal (2018) 20:93
- Yang Zhao. FDA Expectation in building a safe space to gain regulatory flexibility based on PBBM. Redl M-CERSI Workshop, Sep 2019.
- Tycho Heimbach. Dissolution & Translational Modeling Strategies Towards Establishing an In vitro- In vivo Link- Workshop Summary Report. The AAPS Journal (2019) 21-29

Acknowledgements:

Dr. Emilija Fredro Kumbaradzi Dr. Navin Vaya

Thank You