Evidence from *In Vivo* Skin Stripping Studies:

Utility for Evaluating Topical Bioavailability

Annette L. Bunge

Colorado School of Mines

Richard H. Guy

University of Bath

PPP – March 31, 2016

Evidence from *In Vivo* Skin Stripping Studies: Tape

Utility for Evaluating Topical Bioavailability

Annette L. Bunge

Colorado School of Mines

Richard H. Guy

University of Bath

PPP – March 31, 2016

1983 – The Beginning? Rougier et al.

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY, 84:66-68, 1985 Copyright © 1983 by The Williams & Wilkins Co. Vol. 81, No.3 Printed in U.S.A.

In Vivo Correlation Between Stratum Corneum Reservoir Function and Percutaneous Absorption

ANDRE ROUGIER, DIDIER DUPUIS, CLAIRE LOTTE, ROLAND ROGUET , AND HANS SCHAEFER

Départment de Biologie, Laboratoires de Recherche Fondamentale de l'Oréal (AR, DD, CL, RR), Aulnay sous Bois, and Centre International de Recherches Dermatologiques (HS), Valbonne, France

- Chemical applied to hairless rats for 0.5 h (n = 12)
- Skin stripped at application site with 6 pieces of adhesive tape applied sequentially (n = 6)
- Excreta (urine/feces) collected for 4 days (n = 6)

1983 – The Beginning? Rougier et al.

THE JOURNAL OF INVESTIGATIVE DERMATOLOGY, 84:66-68, 1985 Copyright © 1983 by The Williams & Wilkins Co. Vol. 81, No.3 Printed in U.S.A.

In Vivo Correlation Between Stratum Corneum Reservoir Function and Percutaneous Absorption

ANDRE ROUGIER, DIDIER DUPUIS, CLAIRE LOTTE, ROLAND ROGUET , AND HANS

Départment de Biologie, Laboratoires de Recherche Fondamentale de l'Oréal (AR, DD, CL, RR), Aulnay sous Bois, a Recherches Dermatologiques (HS), Valbonne, France

- Chemical applied to hairless rats for 0.5 h (n = 12)
- Skin stripped at application site with 6 pieces of adhesive tape applied sequentially (n = 6)
- Excreta (urine/feces) collected for 4 days (n = 6)
- Chemical amounts in excreta and stripped skin is linearly correlated
- Chemical in skin reservoir absorbs systemically; i.e., it is "available"

- 1983 The Beginning? Rougier et al.
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
 - Drug amounts in SC determined in tape stripped skin over time
 - Post drug application (*uptake*)
 - Post drug removal (*clearance*)
 - Drug level vs time characterized by *pharmacokinetic* metrics:
 - Area under drug leveltime curve (AUC)
 - Maximum amount (A_{max})
 - BE if AUC and A_{max} are the same

Dermatopharmacokinetics (DPK) for BE test

Similar to pharmacokinetic methods for oral drug assessment

oral drug assessment

topical drug assessment

Dermatopharmacokinetics (DPK) for BE test

Similar to pharmacokinetic methods for oral drug assessment

BUT DIFFERENT

oral drug assessment

topical drug assessment

Dermatopharmacokinetics (DPK) for BE test

Similar to pharmacokinetic methods for oral drug assessment

BUT DIFFERENT

oral drug assessment

topical drug assessment

Uptake of active

Clearance of active

8 sites for each formulation

Pershing et al., J Am Acad Dermatol, 2003

Franz, FDA-ACPS, 11/29/2001

- 1983 The Beginning? Rougier et al.
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
 - Reproducibility between laboratories
 - Complexity of the method (large number of analyses required)
 - 8 sites (time points)/product
 - 800 1000 analyses to compare 2 products
 - Adequacy for assessing topical BE when target is not the SC
 - In oral drug assessment, plasma levels are good surrogates of drug level in the target tissue (plasma PK works for transdermal products)
 - Relationship between drug levels in SC and the target organ questioned

- 1983 The Beginning? Rougier et al.
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
 - Reproducibility between laboratories
 - Complexity of the method (large number of analyses required)
 - 8 sites (time points)/product
 - 800 1000 analyses to compare 2 products
 - Adequacy for assessing topical BE when target is not the SC
 - In oral drug assessment, plasma levels are good surrogates of drug level in the target tissue (plasma PK works for transdermal products)
 - Relationship between drug levels in SC and the target organ questioned

Conner, FDA-ACPS, 11/29/2001

Pershing et al., 2003

Franz, FDA-ACPS, 11/29/2001

- The Beginning? Rougier et al. (1983)
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
- 2003 FDA sponsored research to improve the skin stripping method for BE assessment
 - Simplify the method (fewer analyses and decreased variability)
 - Decrease lab-to-lab differences (reduce sensitivity to different operators)

Tretinoin Gel 0.025% Study

Tretinoin Gel 0.025% Study: AUC? 8 times?

guidance

Tretinoin Gel 0.025% Study: AUC? 8 times?

Comparing Products B and C to Product A (RLD)

Data from Pershing; N'Dri-Stempfer et al., Pharm Res, 2008

- BE determinations at individual time points are the same as from AUC or A_{max}
- Larger confidence intervals at individual time points
- Reduce by decreasing experimental variability and duplicating determinations

- The Beginning? Rougier et al. (1983)
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
- 2003 FDA sponsored research to improve the skin stripping method for BE assessment
 - Simplify the method (fewer analyses and decreased variability)
 - Decrease lab-to-lab differences (reduce sensitivity to different operators)

Improved Protocol Developed for FDA

- Stripped area < drug application area (control both areas)</p>
- 1 uptake time & 1 clearance time
 - Duplicate determinations at each time
 - 4 treatment sites / product
- Reliably remove unabsorbed drug (isopropyl alcohol wipes)
- Reduced sample variability by improved drug collection
 - Determine ~all drug in SC by removing nearly all of the SC
 - Remove SC until TEWL > 8 x (TEWL before stripping)
 - At least 12 tape strips, but not more than 30 tape strips
 - Total drug amount = Drug from all tapes (no tapes discarded)

Simplify the method

Reduce lab-to-lab (operator) differences

- The Beginning? Rougier et al. (1983)
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
- 2003 FDA sponsored research to improve the skin stripping method for BE assessment
 - Simplify the method (fewer analyses and decreased variability)
 - Decrease lab-to-lab differences (reduce sensitivity to different operators)
 - FDA → Concerned about assessing BE when target is not the SC Restricted study to antifungal drugs that <u>target the SC</u>

Demonstrating the Improved Protocol

- Econazole nitrate 1% cream
 - Antifungal SC is target site
- Compare 2 generic products to RLD
 - Both products Q1 and Q2 equivalent
- 6 h uptake time & 17 h clearance time
 - Chosen based on pilot study results, and
 - Convenience for subjects and operator

Econazole UPTAKE into SC

Econazole nitrate from 3 bioequivalent formulations measured in duplicate (n=14)

N'Dri-Stempfer et al., Pharm Res, 2009

Econazole UPTAKE into SC

Econazole CLEARANCE from SC

Econazole nitrate from 3 bioequivalent formulations measured in duplicate (n=14)

N'Dri-Stempfer et al., Pharm Res, 2009

Econazole in SC: Average drug amounts

N'Dri-Stempfer et al., Pharm Res, 2009

Econazole in SC: BE assessment

Ratio of formulations A and C to B

Econazole in SC: BE assessment

Ratio of formulations A and C to B

N'Dri-Stempfer et al., Pharm Res, 2009

- The Beginning? Rougier et al. (1983)
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
- 2003 FDA sponsored research to improve the skin stripping method for BE assessment
 - Simplify the method (fewer analyses and decreased variability)
 - Decrease lab-to-lab differences (reduce sensitivity to different operators)
 - FDA \rightarrow Concerned about assessing BE when target is not the SC

- The Beginning? Rougier et al. (1983)
- 1998 FDA guidance for <u>Dermatopharmacokinetic</u> (DPK) bioequivalence (BE) assessment of topically applied drugs
- 2002 FDA guidance for DPK withdrawn
- 2003 FDA sponsored research to improve the skin stripping method for BE assessment
 - Simplify the method (fewer analyses and decreased variability)
 - Decrease lab-to-lab differences (reduce sensitivity to different operators)
 - FDA \rightarrow Concerned about assessing BE when target is not the SC
- 2013 FDA sponsored research to assess in vitro in vivo correlation

Relevance of Drug in SC to Other Skin Layers

For target to dermis or deeper tissues, blood levels are appropriate (if large enough to measure)

Relevance of Drug in SC to Other Skin Layers

- For target to dermis or deeper tissues, blood levels are appropriate (if large enough to measure)
- Drug levels in the SC
 - Will be a good measure of extent (how much drug is delivered), but
 - Might or might not be correlated with levels in non-SC layers

Relevance of Drug in SC to Other Skin Layers

- Drug levels in the SC might not be correlated to drug levels in the non-SC layers if:
 - Topical products include enhancers that evaporate or permeate faster than the drug
 - Enhancer pushes excess drug into the SC
 - Drug "stranded" in SC when the enhancer is depleted
 - Non-absorbed drug is trapped deep in the microfurrows of the SC
- Drug levels in non-SC layers depend on rate of drug delivery from the SC
- Drug delivery rate from SC is an appropriate surrogate for drug levels in non-SC layers

Determine Delivery Rate from SC Drug Levels

Method 1: Measure <u>drug concentration profile in the SC</u> before steady state to determine:

- Partitioning to SC
- Diffusion through SC
- Permeation through SC (partitioning × diffusion) = RATE

Determine:

- Amount of SC on tapes
- Combine with TEWL to determine SC thickness

Determine:

- Amount of SC on tapes
- Combine with TEWL to determine SC thickness
- Drug levels on tapes

5% ibuprofen gel applied 0.5 h

$$\mathbf{C} = \mathbf{K} \mathbf{C}_{vehicle} \left[1 - \frac{\mathbf{x}}{L} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi \, \mathbf{x}/L)}{n} \exp\left(-\frac{D}{L^2} n^2 \pi^2 t\right) \right]$$

Herkenne et al. JID, 127:135-142 (2007)

5% ibuprofen gel applied 0.5 h

$$C = \mathcal{K}C_{vehicle} \left[1 - \frac{x}{L} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(n\pi x/L)}{n} \exp\left(-\frac{D}{L^2} n^2 \pi^2 t\right) \right]$$

Herkenne et al. JID, 127:135-142 (2007)

5% ibuprofen gel applied 0.5 h

Parameter	Iprogel	Optifen
K	1.92 ± 0.21	4.80 ± 0.47
<i>D/L</i> ² [h ⁻¹]	0.211 ± 0.055	0.072 ± 0.022
<i>k_p</i> x 10³ [cm h⁻¹]	0.51 ± 0.14	0.43 ± 0.13

Herkenne et al. JID, 127:135-142 (2007)

Determine Delivery Rate from SC Drug Levels

Method 1: Measure <u>drug concentration profile</u> in the SC before steady state to determine:

- Partitioning to SC
- Diffusion through SC
- Permeation through SC (partitioning × diffusion) = RATE
- Limitations
 - Complex: For each tape (or few tape strips) measure drug levels, amount of SC, and TEWL
 - Limited to short time (unsteady-state) exposures
 - Sensitive to non-absorbed drug left in "microfurrows" after cleaning

Determine Delivery Rate from SC Drug Levels

Method 2: Measure clearance rate from drug levels in SC after drug is removed

- ♦ Measure mass of drug in SC after clearance (₩)
- Compare to mass of drug in SC after uptake ends (
- Calculate the average flux from the SC

Average Flux from Drug Levels in SC (I)

DICLOFENAC

Compare 3 products

- 2% solution (Pennsaid) 10 mg/cm² (contains DMSO)
- ♦ 3% gel (Solaraze) 20 mg/cm²
- 1% gel (Voltaren) 10 mg/cm²
- 17 h clearance time after 6 h uptake
 - 14 subjects

Diclofenac: Average drug amounts in SC

Error bars, 90% CI of the log mean

Diclofenac: BE ratio of drug amounts in SC

Comparing Products V and P to Product S

V = Voltaren (1%) S = Solaraze (3%)

P = Penssaid (2%)

Error bars, 90% CI of the log mean Dashed horizontal line = 1 Solid lines @ 0.8 & 1.25

Diclofenac: BE ratio of drug amounts in SC

Comparing Products V and P to Product S

V = Voltaren (1%) S = Solaraze (3%)

P = Penssaid (2%)

Error bars, 90% CI of the log mean Dashed horizontal line = 1 Solid lines @ 0.8 & 1.25

Diclofenac: Average clearance flux

Error bars, 90% CI

Diclofenac: Average clearance flux

Diclofenac: In vitro permeation test results

Time post drug application, h

Diclofenac: Average clearance flux

DPK vs. IVPT for cumulative penetration during "clearance"

Average Flux from Drug Levels in SC (II)

ACYCLOVIR

- Compare 2 products
 - US Zovirax
 - UK Zovirax
- 17 h clearance time after 6 h uptake
- 10 subjects

Acyclovir: Average drug amounts in SC

Error bars, 90% Cl of the log mean

Acyclovir: BE ratio of drug amounts in SC

Comparing US1 and UK to US2

Error bars, 90% CI of the log mean Dashed horizontal line = 1 Solid lines @ 0.8 & 1.25

Acyclovir: In vitro permeation test results

Calculate flux from mass permeated between 8 and 24 h

Acyclovir: Average clearance flux

DPK vs. IVPT for cumulative penetration during "clearance"

Filled symbols DPK humans (n=14)

Open symbols IVPT human (n=7, 4-8 samples/n)

Skin stripping: Where are we?

- Improved skin stripping methods can reliably and efficiently assess BE of topical dermatological products
 - Pharmacokinetic (multiple time point AUC) analysis is unnecessary
 - Will FDA accept skin stripping for BE assessment?
- Skin stripping can be used to assess drug delivery rate to local target tissues other than SC
 - Results are consistent with *in vitro* permeation testing (IVPT)
 - Skin stripping can assess BE of drugs targeting non-SC tissues

Skin stripping: Where are we? What next?

- Improved skin stripping methods can reliably and efficiently assess BE of topical dermatological products
 - Pharmacokinetic (multiple time point AUC) analysis is unnecessary
 - Will FDA accept skin stripping for BE assessment?
- Skin stripping can be used to assess drug delivery rate to local target tissues other than SC
 - Results are consistent with *in vitro* permeation testing (IVPT)
 - Skin stripping can assess BE of drugs targeting non-SC tissues
- Further development of method for regulatory applications
 - What metric should be assessed? BE limits (0.8-1.25, 0.75-1.33)?
 - Measurement times? How many applications? 1x or more?

Acknowledgements / Disclaimer

- US FDA funding made studies possible, in part, of econazole (award 223-04-3004), and diclofenac and acyclovir (grant 1U01FD004947-01)
- No endorsement from the FDA or US government should be inferred.*

*The views expressed in this presentation do not reflect the official policies of the US FDA or the US DHHS; nor does any mention of trade names, commercial practices, or organization imply endorsement by the US Government.

Acknowledgements

- CSM: Econazole
 - B N'Dri Stempfer, A Bowers, W Navidi
- U Bath: Diclofenac & Acylovir
 - MB Delgado-Charro, A Pensado-Lopez, WS Chiu, SF Cordery, MZ Shehab
- U Maryland Baltimore: Acyclovir
 - AL Stinchcomb, SH Shin, H Hassan, J Quarterman, D Hammell
- T Franz
- FDA: S Raney
- Volunteers who gave up skin and time

Questions?