Abstract Submitted for the DFD13 Meeting of The American Physical Society

Sorting Category: 6. (C)

Hydrodynamic Enhancements of Dissolution from Drug Particles: In vivo vs. In vitro JAMES BRASSEUR, Penn State, YANXING WANG, Georgia Tech — Absorption of drug molecules into the blood stream is generally limited by dissolution-rate in the intestines. Dissolution occurs via diffusion enhanced by a response to the hydrodynamic flow environment, a process that is very different in the human intestine than in a USP-II dissolution apparatus, commonly used by drug companies to validate new drug formulations. Whereas in vivo hydrodynamics are driven by the motility of intestinal wall muscles, the USP-II apparatus is a rotating paddle to mix drug particles during dissolution testing. These differences are of current interest to agencies that regulate drug product development. Through lattice-Boltzmannbased computer simulation of point particles transported through human intestine, we analyze the hydrodynamic parameters associated with convection that quantify the extent to which *in vitro* dissolution tests are or are not relevant to *in vivo* hydrodynamics. . We show that for drug particles less that ~100-200 microns, effects of convection are negligible in the intestines. However, we discover a previously unappreciated phenomenon that significantly enhances dissolution-rate and that distinguishes in vitro from in vivo dissolution: the fluid shear rate at the particle. Supported by NSF and AstraZeneca.

X

Prefer Oral Session Prefer Poster Session James Brasseur brasseur@psu.edu Penn State

Date submitted: 03 Aug 2013

Electronic form version 1.4