

Pharmacokinetics of milled oxycodone hydrochloride tablet products following nasal insufflation in nondependent, recreational opioid users

Heather Boyce, Ph.D.

Office of Research and Standards

Office of Generic Drugs

U.S. Food and Drug Administration

National Institute for Pharmaceutical Technology and Education Annual Scientific Conference December 8-11, 2020

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Outline

FDA

- Background of study
- In vitro preparation of particles
- In vivo results
- Conclusions

- To obtain a better understanding of the abuse deterrent (AD) properties of extended release (ER) opioid products employing a polyethylene oxide (PEO) matrix:
- Objective 1: evaluate the impact of particle size on the pharmacokinetics (PK) of comminuted oxycodone AD ER tablets relative to the PK of comminuted oxycodone immediate release (IR) tablets
- Objective 2: evaluate the effect of excipient-to-drug ratio (EDR) on the PK of comminuted oxycodone ER AD tablets administered intranasally

Nasal insufflation pharmacokinetic (PK) study

- The study is recommended in the FDA guidance for evaluating generic abuse deterrence opioid drug products¹
- Oxycodone HCl ER tablet was the first opioid product with approved AD features
- Impact of formulation variables on PK study outcome:
 - Effect of milled tablet particle size on intranasal PK parameters
 - Impact of the EDR (including AD polymer, PEO)
- Learn how these variables impact generic product comparisons

Research team

Oxycodone tablets were milled to either coarse or fine particle size

- Ensure each bulk vial contains a similar particle size distribution
- Determine the drug concentration per formulation weight for each bulk vial
- Evenly distribute batch samples into individual vials for one cohort of subjects
- Demonstrate individual samples contain consistent drug content uniformity

7

Proper sampling technique ensures each <u>subject receives similar treatment</u> Step 1: Sieving of 160 milled tablets. Correct proportion of sample from each sieve added to each bulk vial

Proper sampling technique ensures each subject receives similar treatment

Step 2: Determination of drug content from each bulk vial (Sample taken from each red partition in sieve)

		Bulk Vial Drug content (mg/100 mg)				
	Sample ID	Cohort 1	Cohort 2	Cohort 3	Cohort 4	
	OXF30 (A)	12.58 (0.03)	12.55 (0.05)	12.65 (0.04)	12.93 (0.09)	
	OXC30 (B)	14.12 (0.05)	13.99 (0.05)	14.22 (0.13)	14.35 (0.09)	
	OXF80 (C)	16.79 (0.12)	16.16 (0.03)	17.94 (0.82)	16.85 (0.10)	
	RXF30 (D)	28.83 (0.14)	28.75 (0.10)	29.79 (0.81)	28.99 (0.42)	
Bulk Vials						

Proper sampling technique ensures each subject receives similar treatment

Step 3: 4 bulk vials randomly shipped to clinical site. The clinic dispenses individual samples from bulk vials using sampling protocol

Proper sampling technique ensures each subject receives similar treatment

Step 4: Confirm individual samples have correct drug content after dispensing (n =34)

Impact of dose normalization across treatment

Ideal situation								
	Drug (mg)	Formulation (mg)						
Oxy 30 mg fine	30	156						
Oxy 30 mg coarse	30	156						
Oxy 80 mg fine	30	97.5						
Roxi 30 mg fine	30	100						
Approach 1: Normalized by 30 mg drug								
Oxy 30 mg fine	30	265.5						
Oxy 30 mg coarse	30	252.1						
Oxy 80 mg fine	30	185.2						
Roxi 30 mg fine	30	115.8						
Approach 2: Normalized by formulation								
Oxy 30 mg fine	20	156						
Oxy 30 mg coarse	21	156						
Oxy 80 mg fine	41	260						
Roxi 30 mg fine	29	100						

www.fda.gov

FDA

Nasal insufflation PK study design

- Single center, randomized, open-label, single-dose, 4-sequence, 4-period, 4-treatment crossover design under fasting conditions in 41 healthy recreational opioid users
- Treatment arms:
 - A. Fine particles (106-500 μ m) oxycodone ER AD 30 mg (EDR = 6.9)
 - **B.** Coarse particles (500-1000 μ m) oxycodone ERAD 30 mg (EDR = 6.1)
 - C. Fine particles (106-500 μ m) oxycodone ER AD 80 mg (EDR = 4.9)
 - **D.** Fine particles (106-500 μm) oxycodone IR 30 mg (non-ADF control, EDR = 2.4)
- ↔ A vs B \rightarrow Effect of particle size
- A vs C → Effect of polymer-to-drug ratio

	Period A	*	Period B	*	Period C	*	Period D*	
Time (Days)	Equivalent to 30 mg dose of finely milled 30 mg oxycodone ER AD tablets		Equivalent to 30 mg dose of coarsely milled 30 mg oxycodone ER AD tablets		Equivalent to 30 mg dose of finely milled 80 mg oxycodone ER AD tablets		Equivalent to 30 mg dose of milled oxycodone IR tablets	
	\leftarrow 1-2 \rightarrow	3	\leftarrow 4–5 \rightarrow	6	← 7—8 →	9	\leftarrow 10-11 \rightarrow	14-15
Screening	РК	Washout**	РК	Washout**	PK	Washout**	РК	Follow - up

* This is an example of the sequence Period A \rightarrow B \rightarrow C \rightarrow D **Dosing intervals of approximately 72 hr

www.fda.gov

Insufflated product equated to ±10% of dispensed amounts equivalent to the desired dose of 30 mg

www.fda.gov

EDR impact on PK was not significant

www.fda.gov

FDA

Conclusions

- Preferential drug loss occurs after tablet is milled to specified particle size distribution
- Milling and dispensing methods were suitable for preparing reproducible sample for nasal insufflation clinical PK studies
- Subjects were able to snort ±10% of sample dispensed to them
- Finely milled oxycodone ER exhibited higher C_{max}, AUCs, and early partial AUCs in comparison with coarsely milled oxycodone ER
- There was no significant effect of EDR on the PK of finely milled oxycodone within the ranges studied

Saeid Raofi

Minori Kinjo

Mitchell Frost

Markham Luke

Myong-Jin Kim

Rob Lionberger

Lei Zhang

Karthika Natarajan

Ross Walenga

Steven Chopski

Dajun Sun^{*}

Zhichuan Li^{*}

OGD/ORS/DTP OGD/ORS/DTP OGD/ORS/DTP OGD/ORS/DTP

OGD/ORS/DQMM OGD/ORS

OGD/ORS

rajan OGD/ORS/DTP

OGD/ORS/DQMM

OGD/ORS/DQMM

OGD/ORS/DQMM

n Li^{*} OGD/ORS/DQMM

Zhengjie Meng Tonglei Li Bradley Vince Debra Kelsh

Purdue University Purdue University Vince and Associates Vince and Associates

