Integrating Topical Drug Product Quality Attributes Within Physiologically-based Pharmacokinetic Models

October 28th, 2020 Sumit Arora, PhD Senior Research Scientist

Certara UK Limited Simcyp Division

#PharmSci360

Session Description and Objectives

- This talk will discuss the considerations/key parameters needed to develop and verify/validate a mechanistic dermal absorption model capable of explaining observed in vitro and *in vivo* permeation of drugs across skin from topical applied drug products
- List data requirements in developing and verifying/validating dermal Physiologically Based Pharmacokinetic (PBPK) models
- Understand the utility of PBPK models in identifying critical product quality attributes of topical/transdermal drug products influencing skin permeation
- Appreciate the utility of *in vitro* verified PBPK models in predicting *in vivo* dermal exposure (*in vitro in vivo* extrapolation, IVIVE) of topically applied drug products

Biography and Contact Information

- Senior Research Scientist (Virtual Bioequivalence) in the modeling and simulation group at Certara Simcyp
- Project lead of the FDA awarded grant investigating the integration of formulation drug product quality attributes in dermal physiologically based pharmacokinetic models for topical/transdermal drug products
- Expertise in the field of biopharmaceutics for oral and dermal drug products and in the field of Physiologically Based Biopharmaceutics Modeling (PBBM)

Email – sumit.arora@certara.com

Acknowledgments and Funding

Funding for this research work was made possible, in part, by the U.S. Food and Drug Administration through Grant 1U01FD006522 and 1U01FD005225.

Simcyp

- Sebastian Polak
- James Clarke
- Farzaneh Salem
- Tariq Abdulla
- Arran Hodgkinson
- Santosh Kumar Puttrevu
- Krishna Chaitanya Telaprolu
- Masoud Jamei

Disclaimer

US FDA

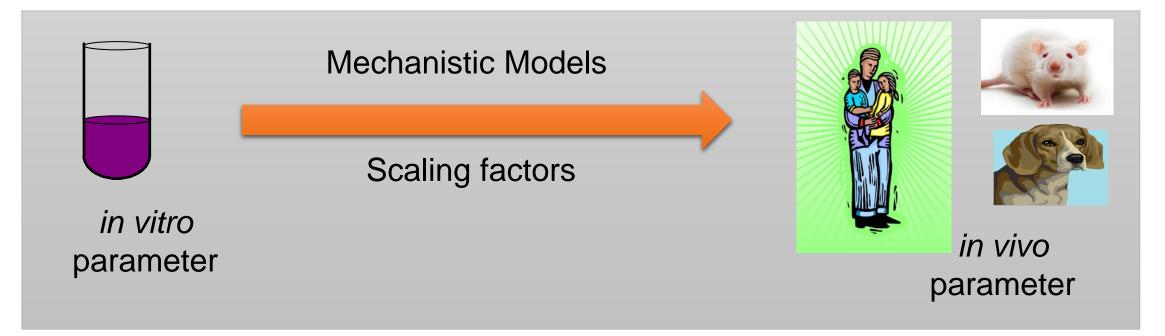
- Eleftheria Tsakalozou
- Priyanka Ghosh
- Khondoker Alam
- Sam Raney
- Markham Luke
- Andrew Babiskin
- Liang Zhao
- Lei K Zhang

University of Queensland (Collaborative Partner)

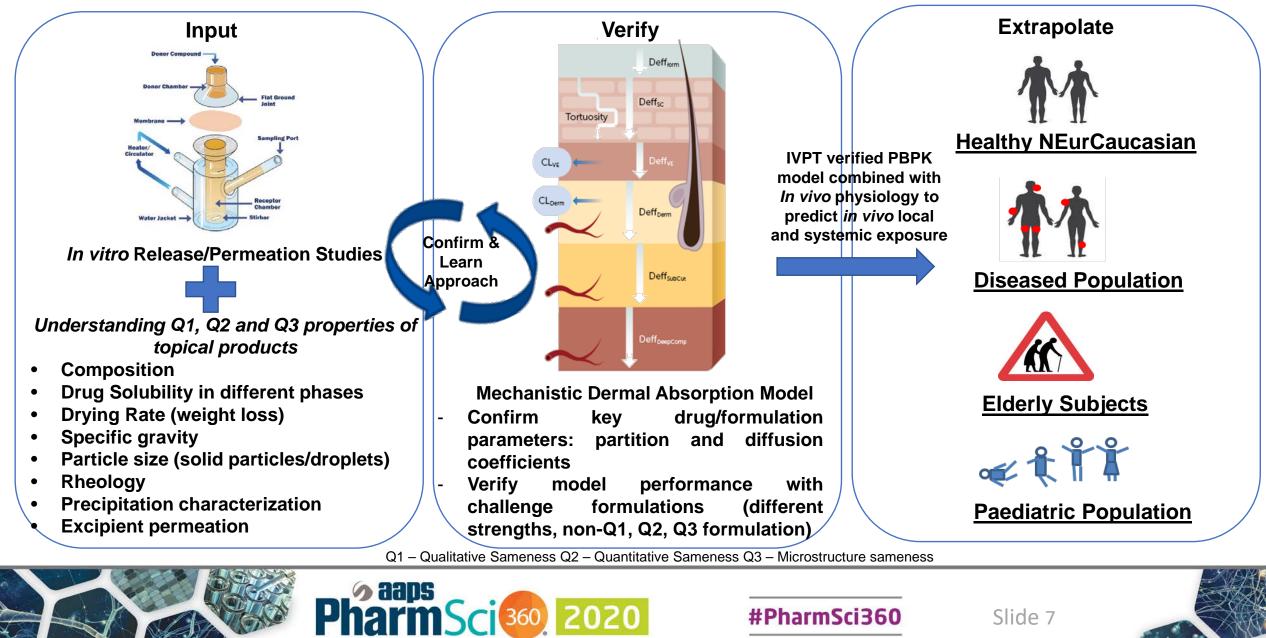
- Prof. Mike Roberts
- Jeff Grice
- Yousuf Mohammed
- Xin Liu

The views expressed in this presentation do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

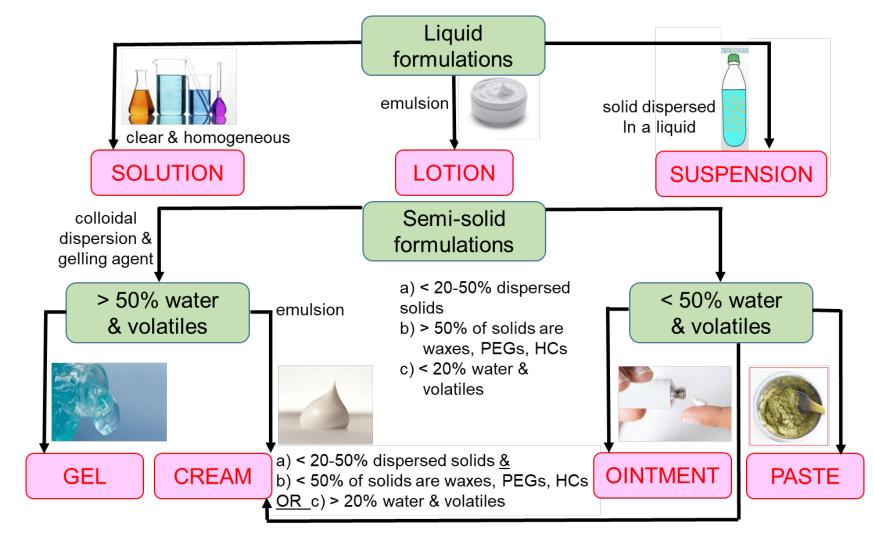
Outline of the Presentation


- 1. Introduction of IVIVE and its application for dermal drug delivery
- 2. Metamorphosis of topically applied formulations Modeling Challenges
- 3. Skin PBPK model structure and input parameters required
- 4. Case Study Metronidazole commercial formulations (MetroGel®)
- 5. Conclusion(s)

Understanding In vitro to Predict In vivo – IVIVE with PBPK Modeling


- Information obtained from surrogate *in vitro, ex vivo* or animal studies is used to provide quantitative solutions to predict the *in vivo* behavior of drugs in a target human population prior to undertaking a clinical study
- This approach is widely used now in field of metabolic clearance/drug-drug interaction prediction and gastrointestinal absorption.

A Rostami-Hodjegan et al. Clin Pharmacol Ther. 2012 Jul;92(1):50-61. doi: 10.1038/clpt.2012.65.



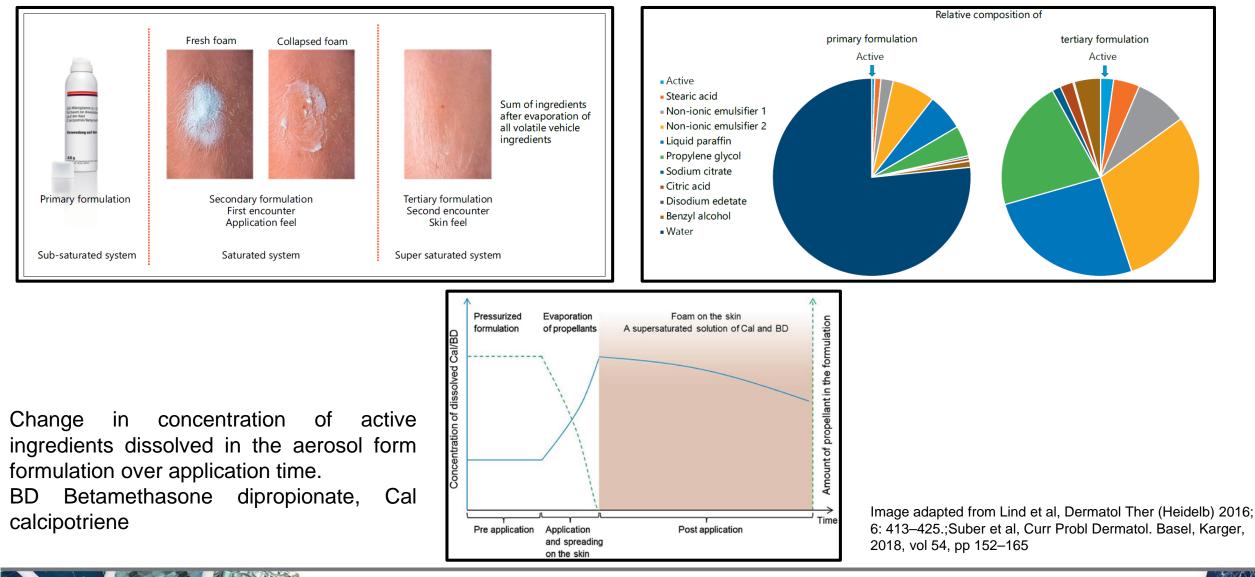
Dermal IVIVE – A step towards Virtual Bioequivalence for Complex Topical Products

Topical Formulations/Products for Dermatological Applications

All these products can broadly be classified as –

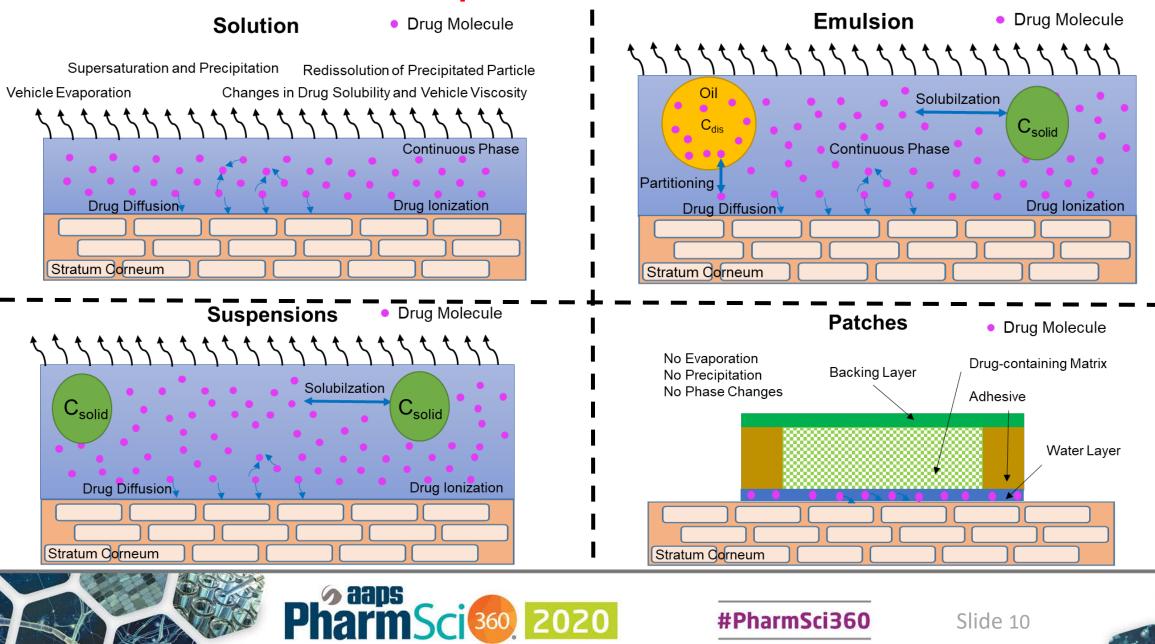
- I. Solutions
- 2. Emulsions
- 3. Suspensions

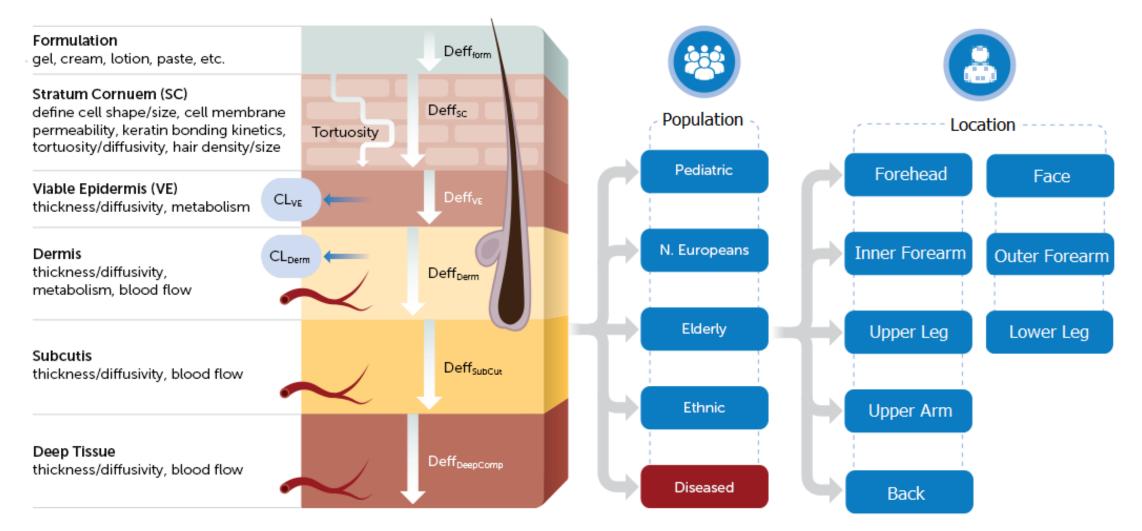
Adapted from SR Chaudhuri, AAPS Workshop Nov. 2017 San Diego (co-organisers: S. Raney & SR Chaudhuri)


Slide 8

#PharmSci360

Metamorphosis of Topical Formulations


PharmSci 360 2020


#PharmSci360

Modeling Metamorphosis of Topical/Transdermal Formulations – Even Simple Formulations Are Not That Simple !!!

Simcyp's Multi-Phase Multi-Layer (MPML) MechDermA Model

Martins et al. GRC - Barrier Function of Mammalian Skin, NH, USA, August 13 - 18, 2017.

#PharmSci360

Input Parameters Needed to Parameterize the Model

input i didifictoro nocaca to i didifictorize tito model				
Systems Data	Trial Design	Drug Data	Formulation	
Systems Parameters	<u>Trial Design</u>	Drug Parameters	Formulation Data	
 In vitro Simulation Static or flow through Anatomical region Type of skin sample Thickness of skin sample Area of diffusion cell Volume of receptor fluid In vivo Simulation Site of application 	 Number of subjects Demographics (age range, gender) Dose and volume of formulation applied Duration of simulation 	 MW Log P pKa f_u (QSAR) Skin Model Inputs (Partition and Diffusion Coefficient) K_{SClip:Water} (QSAR) K_{SC:VE} (QSAR) K_{Dermis:VE} (QSAR) K_{Dermis:VE} (QSAR) 	 Type of Formulation ✓ Solution ✓ Emulsion (w/wo particles) ✓ Suspension ✓ Patch Composition Drug solubility in different phases Drying rate (weight loss) Specific gravity Particle size (solid) 	
 Physiology is then populated from database generated from meta- 		• D_{SClip} (QSAR) • D_{VE} (QSAR) • D_{VE} (QSAR)	 Particles/droplets) Rheology Precipitation 	

Precipitation
 characterization

analysis (can be modified

by the user)

#PharmSci360

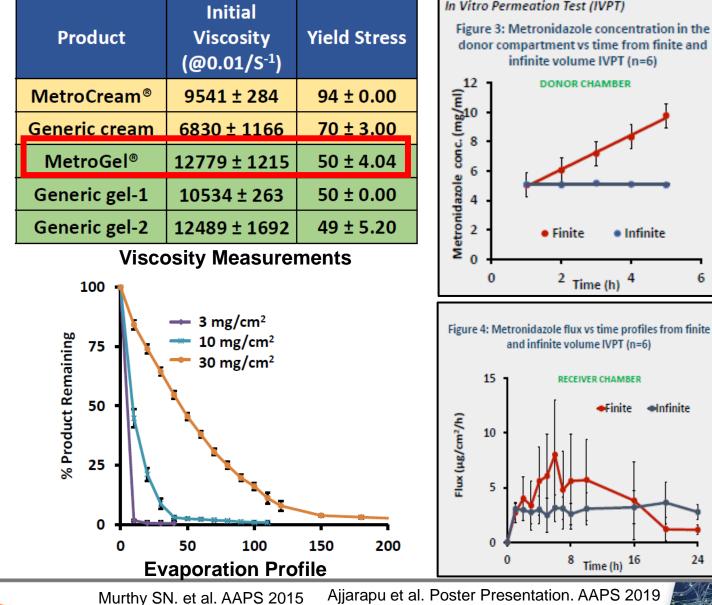
D_{Dermis} (QSAR)

fu_{SC} (QSAR)

Case Example – Modeling *In Vitro* and *In Vivo* Skin Permeation of Metronidazole Commercial Formulations (<u>MetroGel</u>[®]) – Dermal IVIVE

Q3 data for MetroGel needed for model parameterization

- 1. Gels can be treated as **solutions** if they are monophasic systems (in case of MetroGel[®], metronidazole is completely solubilized in the formulation)
- 2. We need understanding of following Q3 properties
 - a) pH of the formulation.
 - b) Drying rate at 32°C (relevant to skin temperature) loss of volatile ingredients of the formulation.
 - c) Rheology understanding the viscosity of formulation at rest conditions (lower shear rates).
 - d) Metronidazole solubility in formulation (in this case since more than 95% v/v of formulation is water, solubility of metronidazole in water is required).
 - e) If precipitation of drug is observed, we need to parametrize the precipitation model.



MetroGel[®] (0.75%) Structural and Physical Characterization Data – Murthy et al. 2015 In Vitro Permeation Test (IVPT) Initial

Parameter	MetroGel[®]
Formulation Simulation Option	Solution
Dose of Cream Applied (mg/cm ²)	10
Density of formulation (g/cm ³)	1.01
Dose of Drug Applied (µg)	74
Volume of Formulation (mL)	0.01
Thickness of Formulation (cm)	0.01
Viscosity (cP)	12779
pH of formulation	5.23
Drug Solubility in Continuous Phase (mg/mL)	8.7
Evaporation Profile	User Input Profile
Precipitation Model	Empirical
CSR	1
PRC (h ⁻¹)	11

Pharm Sci

#PharmSci360

Slide 15

Infinite

6

24

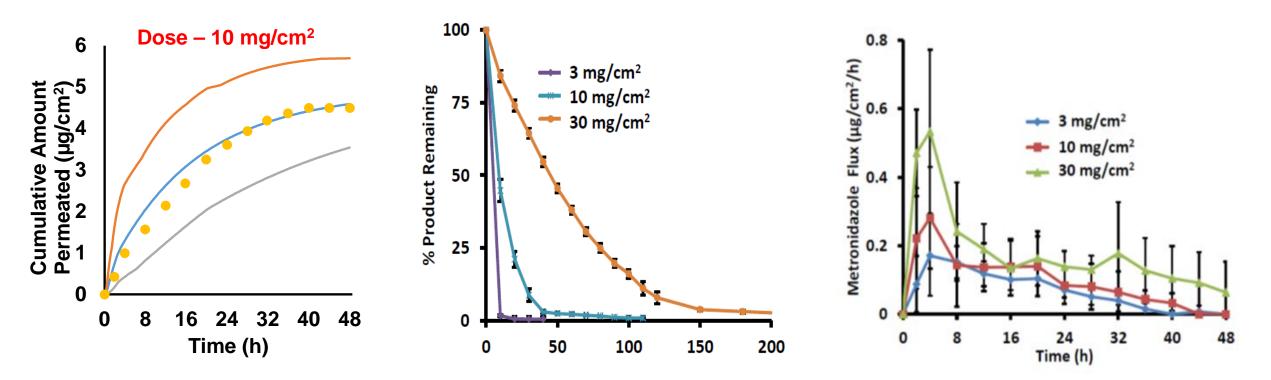
Parameterization of Formulation Parameters for MetroGel[®] in MPML MechDermA Model

ormulation Options and Parameters			
Formulation pH is skin surface pH Formulation pH		5.23	Formulation pH Input
Fraction non-ic	onised at skin surface fniskin surface 🔒	0.998589	
Formu	lation drug liberation lag time (h)	0	CV (%) O Apply lag time to vehicle evaporation
Consider Vehicle Evaporation			Mean CV (%)
Temperature of skin (°C)	32		Vapour pressure of vehicle at skin temperature (mm Hg)
MW of vehicle (g/mol)	18		Air velocity (m/sec) 0.5 30
Density of vehicle (g/ml)	1.0238		Maximum % (v/v) vehicle evaporated 99 0
○ (Zero Order) Evaporation rate (ml/h)		1.25073	CV (%) ³⁰
First Order Evaporation Rate Constant KER (1/h)		0.1234	
Vehicle Evaporation Profile			Input of Evaporation Profile
Custom Dermal - Drug/Formulation Parameter(s)			
Allow drug to precipitate			
Mechanistic Growth Model (only suspensions and emulsions v Empirical Model (only solutions and emulsions without particle			Precipitation Model CSC (CSR x Eq.S
Critical Supersaturation Ratio			$i=1$ $D_{i}(t)$
Precipitation Rate Const. (1/h) Apply Secondary PRC Secondary PRC (1/h)	11 100	DR	$(t) = \sum_{NBING} -N_i S_{DR} \frac{D_{eff}(t)}{h_{eff,i}(t)} 4\pi a_i(t) \left(a_i(t) + h_{eff,i}(t)\right) \left(S_{surface}(t) - C_{bulk}(t)\right)$
Total Concentration in continue Reference Concentration Unionized Concentration in co			Wang Flanagan Equations (Diffusion layer model for particle
Solution			dissolution)
Diffusion Coeff (cm ² /h) 🗍 1.84346E-06 Vehicle	terar volume (mL/mol) 18	P	,
rug solubility in vehicle (mg/mL) 8.7	Viscosity (centipose) 12779		 Physical and Structural Characterization Data of Topical
Particle Count for Precipitation 🔒 354916			Formulations

Simulation of *in vitro* skin permeation of metronidazole – Diffusion and Partition Parameters – 3 dose application 3, 10 and 30 mg/cm²

- MW 171.56, log P -0.02, Compound type Monoprotic Base, pKa 2.38
- Compound is non-ionized at skin surface pH
- Back as skin site, Dose = 10 mg, Dose Volume = 2 mL, Trial Design = 10 trials X 6 individuals

Partition and diffusion coefficient of metronidazole across various tissue layers

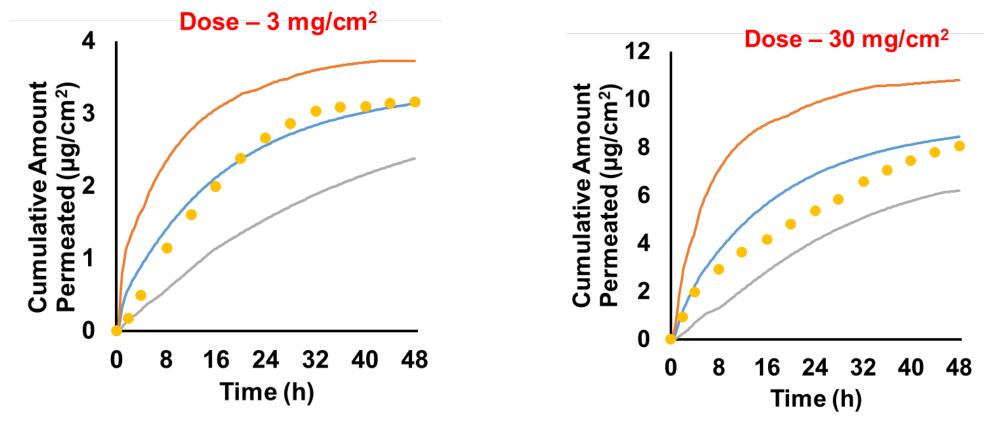

Parameter	Value	Unit of	Method
K _{lip/water}	5	<u>measure</u> NA	Optimized using finite dose aqueous solution IVPT data
K _{sebum/water}	0.816	NA	Yang 2019
K _{SC/VE}	0.995	NA	Shatkin and Brown QSAR
K _{Dermis/VE}	0.729	NA	Modified Chen 2015
K _{Dermis/Sebum}	0.891	NA	Modified Chen 2015
K _{Receptor:Dermis}	1	NA	Assumed
P _{corneocyte}	1E-05	cm/h	Default
D _{sclip}	1.28E-04	cm²/h	Optimized using 10 mg/cm ² IVPT data
Tortousity	2336.06	NA	Johnson QSAR
D _{Dermis}	0.0102	cm²/h	Modified Chen 2015
D _{ve}	0.0102	cm²/h	Modified Chen 2015
D _{Receptor}	1	cm²/h	
Fraction unbound in SC	0.488		Polak et al. 2016

#PharmSci360

Simulation of *in vitro* skin permeation of metronidazole from MetroGel[®] - Murthy et al. Q3 Characterization - Dose 10 mg/cm²

Optimized model was able to simulate metronidazole cumulative amount permeated from 10 mg/cm² dose application. We need additional verification of the model with other two challenge doses since these show very different formulation metamorphosis

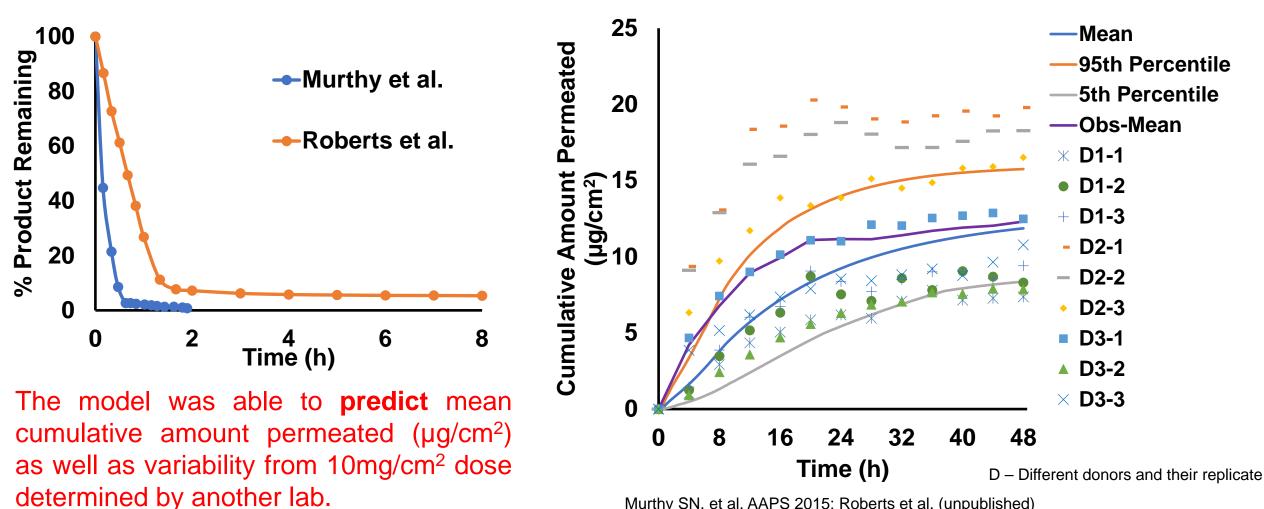
Murthy SN. et al. AAPS 2015



Simulation of *in vitro* skin permeation of metronidazole from MetroGel[®] - Murthy et al. Q3 Characterization - Dose 3 and 30 mg/cm²

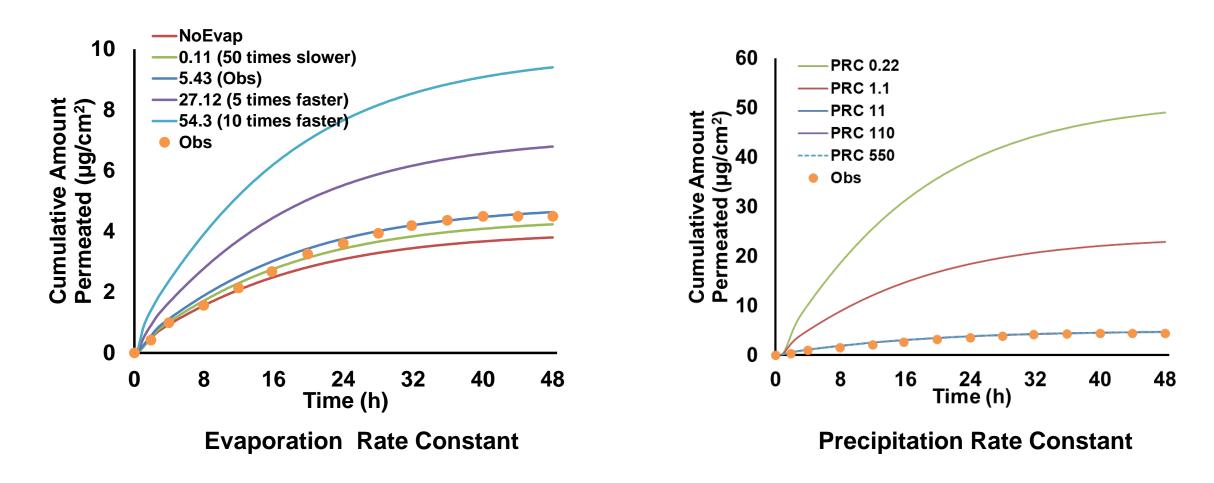
• In all these gel simulations, duration of drug application was set when nearly 99% of the water is evaporated

Optimized PBPK model was able to **predict** cumulative amount permeated (µg/cm²) observed from the challenge formulation (different dose volumes) Murthy SN. et al. AAPS 2015



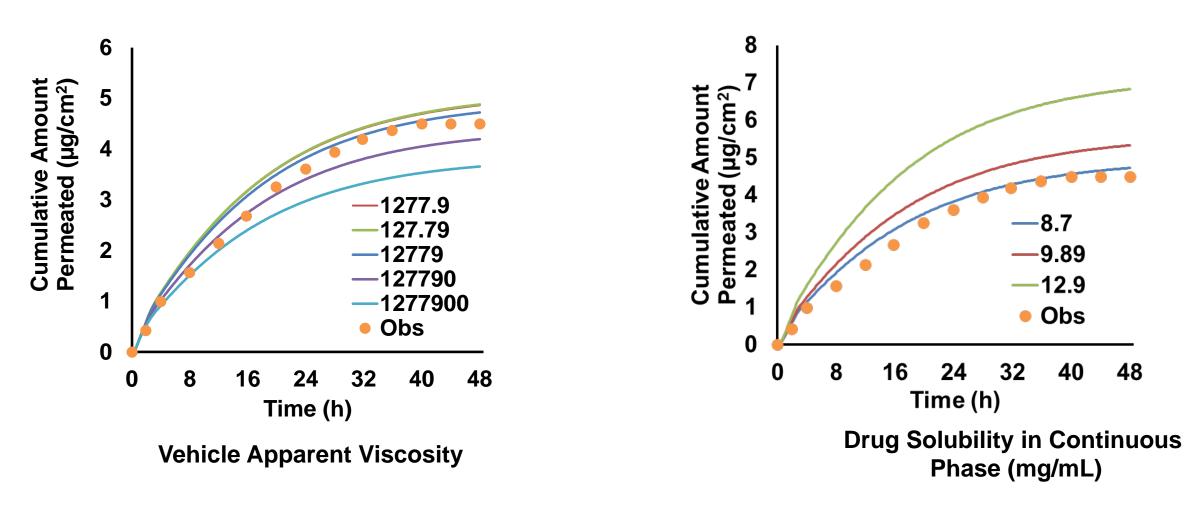
Simulation of *in vitro* skin permeation of metronidazole from MetroGel ® - Roberts et al. Q3 Characterization - Dose 10 mg/cm²

All the parameters are similar except pH of formulation (pH 4.8) and evaporation profile

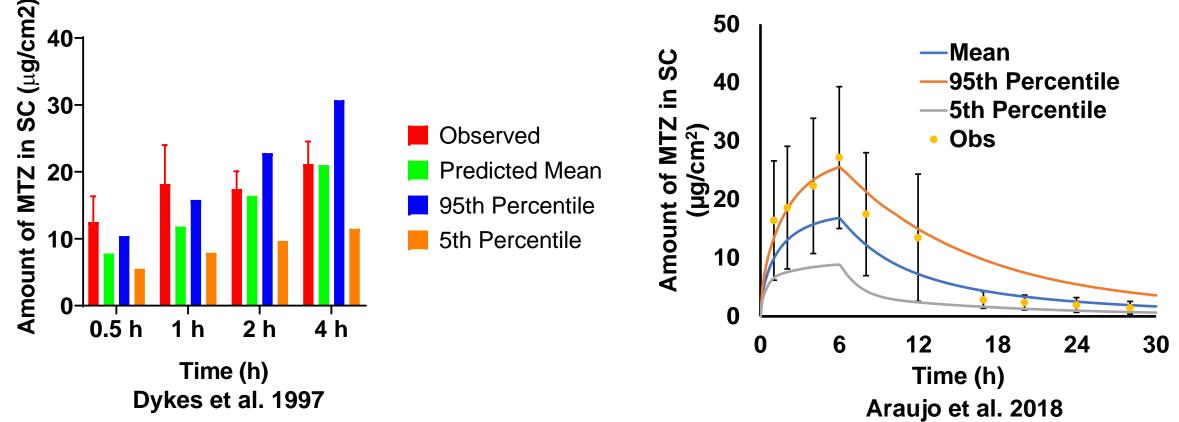


Murthy SN. et al. AAPS 2015; Roberts et al. (unpublished)

Parameter Sensitivity Analysis of Critical Formulation Parameters of MetroGel[®]



Parameter Sensitivity Analysis of Critical Formulation Parameters of MetroGel[®]



Simulation of *in vivo* skin permeation of metronidazole from MetroGel[®] and Rosex[®]

Rosex[®] was assumed to be similar to the MetroGel[®]. Both are 0.75% w/w gels of metronidazole with similar Q1 properties. Assumed metronidazole freely permeates through corneocyte

The model was able to **predict** metronidazole amount permeated (µg/cm²) in the stratum corneum observed *in vivo* demonstrating successfully IVIVE in this case.

Conclusions

- PBPK models can be immensely helpful in dermal drug development. The developed models, with limited datasets, was able to capture the *in vitro* skin permeation of metronidazole from gels formulation provided these models are adequately parameterized with respect to physical and structural characterization of formulations.
- We validated this approach for other drugs and formulations.
- These models present an opportunity to understand the impact of differences in formulation attributes between reference and test products on their *in vivo* performance.
- IVIVE was demonstrated for metronidazole gel formulations Consistency in terms of dose applied and conditions of application between *in vitro* and *in vivo* scenarios is needed to further understand/evaluate capability of PBPK modelling approaches in predicting *in vivo* exposure from *in vitro* verified models.

Thank you and Questions? Email – sumit.arora@certara.com

Please feel free to be in touch via the email if you have additional questions and want to know more about our work

The Simcyp Simulator is <u>freely</u> available, following completion of the relevant workshop, to approved members of academic institutions and other not for -profit organizations for research and teaching purposes. "

#PharmSci360

