Simulating the Effect of Propylene Glycol on Acyclovir (Zovirax[®] Cream, 5%) Permeation Across the Skin Using a Physiologically Based Pharmacokinetic (PBPK) Model of *In Vitro* Flow-through Skin Permeation

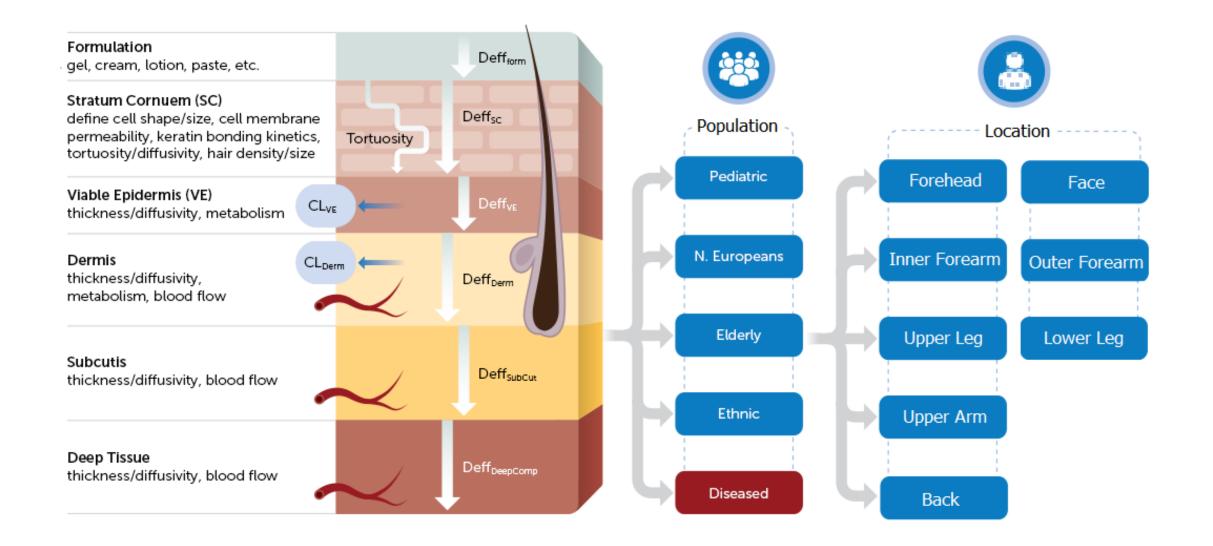
Sumit Arora^{1*}, NikunjKumar Patel¹, Sebastian Polak^{1,2} Masoud Jamei¹, Eleftheria Tsakalozou³, Priyanka Ghosh³, Khondoker Alam³, Xin Liu⁴, Sarika Namjoshi⁴, Jeffrey Grice⁴, Yousuf Mohammed⁴, Michael Roberts⁴

¹Certara UK Ltd, Simcyp Division, Sheffield, UK ,²Faculty of Pharmacy, Jagiellonian University Medical College, Poland,³Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.,⁴Therapeutics Research Centre, Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia

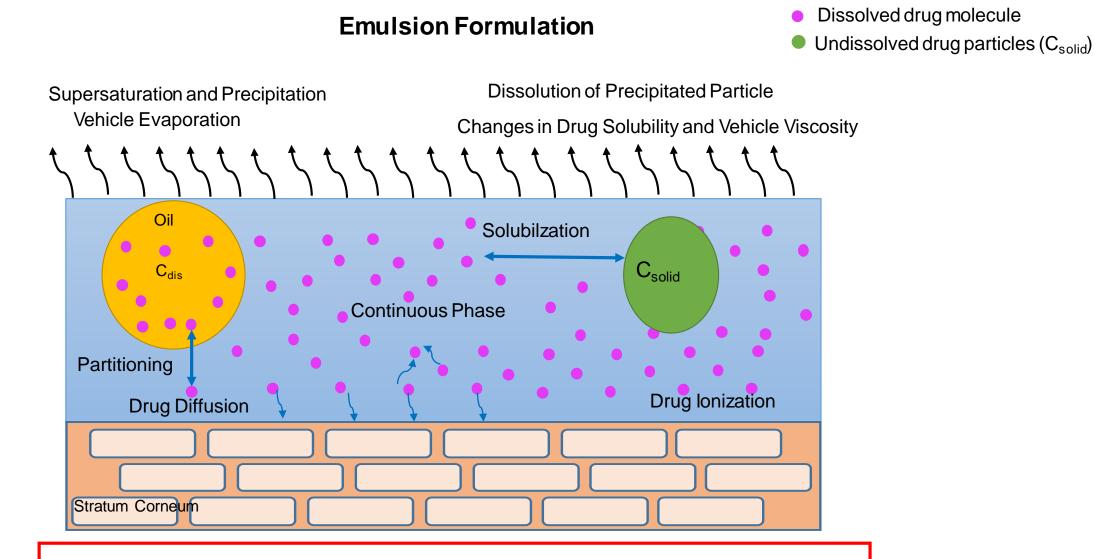
> Poster Number: 296 CRS Virtual Annual Meeting June 29 – July 2, 2020

*Presenting Author: sumit.arora@certara.com

Disclaimer

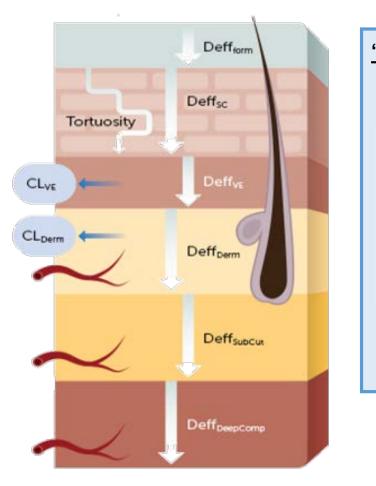

Funding for this research work was made possible, in part, by the U.S. Food and Drug Administration through Grant 1U01FD006522. The views expressed in this presentation do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

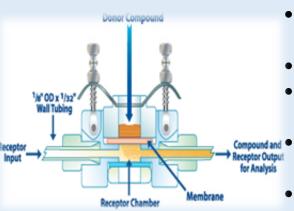
- 1) Background and aim of the research
- 2) Model structure and input parameters
- 3) PBPK modeling plan for Zovirax[®] Cream, 5%
- 4) Results
- 5) Conclusions


- An adequately validated in vitro permeation test (IVPT) can provide a mechanistic understanding of local drug bioavailability following application of topical dermatological products.
- IVPT is routinely used during formulation development of topical products and is recommended as part of an *in vitro* characterization-based approach for establishing bioequivalence (BE) in the published FDA Draft Guidance on Acyclovir (Topical cream, 5%).¹
- A verified physiologically based pharmacokinetic (PBPK) model of *in vitro* skin permeation (IVPT) experiment can enhance our understanding of how drug product quality attributes can influence skin permeation of the applied drug substance.
- These PBPK models can also be utilized to understand the interplay between the drug substance and key inactive ingredient(s) in influencing skin permeation of the drug substance.

The present study aimed to develop a mechanistic "bottom-up" PBPK model integrating drug product quality attributes to predict *in vitro* permeation of acyclovir from acyclovir commercial cream, Zovirax[®] (acyclovir) Topical Cream 5% (approved in the U.S) applied on excised human skin and to understand the role of propylene glycol (PG) in influencing the acyclovir skin permeation.

Simcyp's Multi-Phase Multi-Layer (MPML) MechDermA Model


6


Simple topical formulations are not that 'simple' to model

Input Parameters Needed to Parameterize the PBPK Model

Systems Data	Trial Design	Drug Data	Formulation
Systems Parameters	Trial Design	Drug Parameters	Formulation Data
 In vitro Simulation Type of skin sample Thickness of skin sample Active diffusion area Volume of receptor fluid Skin physiology (database generated from meta-analysis, can be modified by the user) 	 Number of subjects Demographics (donor age range, gender) Dose Area of Application Duration of simulation 	 MW LogP pKa Skin Model Inputs (Partition and Diffusion Coefficient) Kp_{SClipids:Water} (QSAR) Kp_{SC:VE} (QSAR) Kp_{Dermis:Blood} (QSAR) Kp_{Dermis:Blood} (QSAR) D_{SClip} (QSAR) D_{VE} (QSAR) D_{Dermis} (QSAR) fu_{SC} (QSAR) 	 Composition Drug solubility in different phases Drying rate (weight loss) Specific gravity Particle size (solid particles/droplets) Rheology (viscosity) Drug precipitation
			Kp – Partition Coefficient D – Diffusion Coefficient

'Flow Through' Cell Setup Parameters

- Select relevant skin physiology (skin site back was used in the present case)
- Adjust skin layer thickness (dermatomed skin)

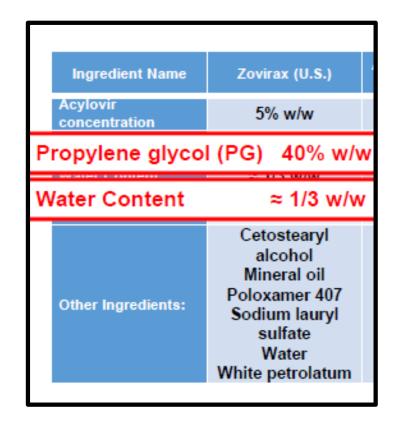
• Set subcutis (for dermatomed skin) as receptor chamber and match receptor chamber volume

- Set systemic elimination to 'zero' (such that the drug will accumulate in the systemic compartment)
- Set blood flow scalars to match experimental flow rate

MPML MechDermA Model

Two modeling approaches were explored to understand the effect of propylene glycol (PG) in influencing acyclovir skin permeation

Static Approach


 Effect of (PG) on the stratum corneum lipid:vehicle partition coefficient (Kp_{sc lipids:vehicle}) for acyclovir by calculating a single constant value for this parameter was considered

Dynamic Approach

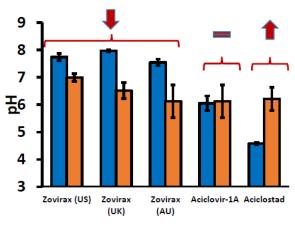
 Time-dependent increase in Kp_{sc lipids:vehicle} as the result of the hypothesized skin permeation of PG was considered

Composition of Zovirax Cream

ovirax Cream (Approved in L		
	Zovirax US	
Components	%(w/w)	
Water	33	
Propylene Glycol	40 ^a	
Solid Particle	4.14 ^c	
Dispersedphase	22.86 ^d	

Taken From Prof. Mike Roberts Presentation at US FDAb

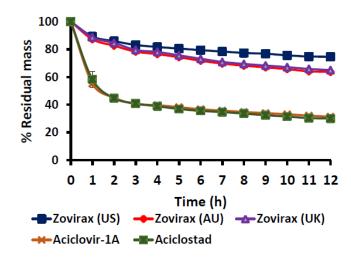
Information we have regarding composition of Zovirax Cream


^aTrottet et al., International Journal of Pharmaceutics, 304, (2005), 63–71, ^bRoberts, MS. FDA workshop on Bioequivalence testing of Topical Drug Products, Silver Spring, Maryland, USA, 20 October 2017, ^cCalculated from dose applied, ^dCalculated [100-(Vol of Water+PG+Solid Particle)]

Structural and Physical Characterization of Zovirax Cream

Key input model parameters such as those related to physical and structural characterization of the Zovirax[®] Cream, 5% (Table below) were obtained from Murthy 2015.

Parameter	Zovirax US %(w/w)
Volume of Formulation (mL)	0.0147
Thickness of Formulation (cm)	0.0147
Viscosity (cP)	8360
pH of formulation after 2 h	7
Drug Solubility in Continuous Phase (mg/mL)	1.49
Ratio Dispersed/Aqueous Phase	1.752
Evaporation Profile	User Input Profile
Precipitation Model	Growth Model


Post application pH of formulation

Cream pH

Post skin application cream pH (after 2 h)

pH of formulation after application on skin

Evaporation profile of Acyclovir products

Murthy SN. AAPS Annual Meeting, Orlando, Florida, USA, 25-29 October 2015.

Parameterization of Formulation Parameters in MPML MechDermA Model

Acyclovir	sım 🗰 CYP
Formulation Options and Parameters Formulation pH is skin surface pH Formulation pH Fraction non-ionised at skin surface fniskin surface	Formulation pH Input
Formulation drug liberation lag time (h)	$DR(t) = \sum_{NBINs}^{i=1} -N_i S_{DR} \frac{D_{eff}(t)}{h_{eff,i}(t)} 4\pi a_i(t) (a_i(t) + h_{eff,i}(t)) (S_{surface}(t) - C_{bulk}(t))$ Wang Flanagan Equations (Diffusion layer model for particle dissolution)
Volume fraction of dispersed phase (%) 22.86 Drug solubility ratio dispersed Radius of dispersed phase droplets (µm) Monodispersed Drug solubility ratio dispersed Number of droplets per cm ³ (N/mL) 4.36594E+08 Drug solubility in continuous phase Volume fraction of solid particle (%) 4.14 Drug solubility in continuous	permeability (cm/h) 1E-05 Physical and Structural Characterization Data of Topical Formulations

Effect of Propylene glycol (permeation enhancer) on Acyclovir Skin Permeation

Table 2.	ACV Skin Permeation Parameters from Solvent Systems and Carbopol® 971-P Gels at 0.5% (w/w),
without a	nd with 10%, 30%, 50%, and 70%, (w/w) PG: Partition (P') and Diffusion (D') Parameters*, Permeability
Coefficient	ts $(K_p)^*$, Lag Time (t_L) and Enhancement Ratios (ER)

Vehicle	Partition Parameter (P')	Diffusion Parameter (D')	$K_p imes 10^4 ~({ m cm/h})$	Lag Time $(t_{\rm L}, h)$	ER
Solvent system					
0	0.081 (0.024)	0.010 (0.002)	7.81 (1.36)	17	_
10	0.112 (0.019)	$0.010 \ (0.001)^a$	$11.43 (1.83)^a$	16	1.5
30	0.201 (0.039)	$0.011 (0.002)^a$	$21.15(4.02)^{b}$	16	2.7
50	0.529 (0.060)	$0.012 (0.001)^a$	$63.59(7.63)^b$	14	8.1
70	0.632 (0.142)	$0.013 (0.002)^a$	$78.97 (15.71)^{b}$	13	10.1
Hydrogels					
0	0.023 (0.005)	0.008 (0.001)	1.79 (0.48)	21	_
10	0.044 (0.011)	$0.007 (0.001)^a$	$3.10 \ (0.35)^a$	24	1.7
30	0.050 (0.013)	$0.008 \ (0.002)^a$	$4.10 (1.04)^a$	20	2.3
50	0.108 (0.012)	$0.011 (0.001)^a$	$12.10(1.38)^{b}$	15	6.8
70	0.111 (0.034)	$0.009 (0.002)^a$	$9.99 (4.12)^b$	19	5.6

Calculation of Scalar for Klipsc:veh

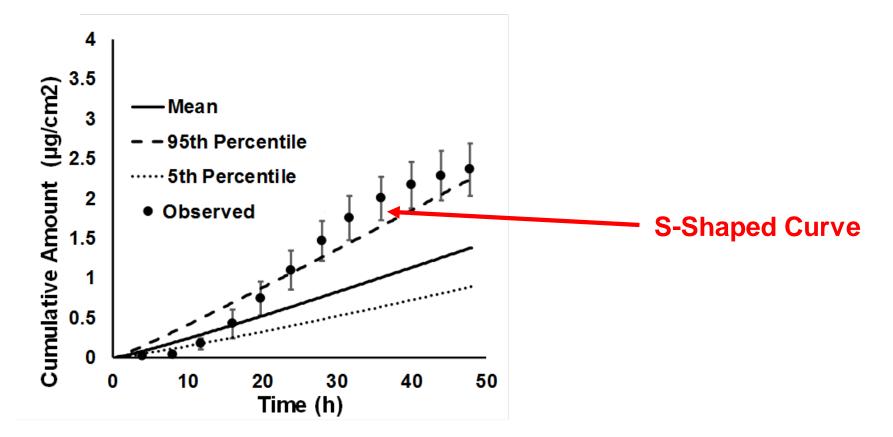
%PG	Partition Parameter (P)
0	0.081
30	0.201
50	0.529
40	0.365
Scalar	4.5

*The data are the mean of three determinations. Standard deviations are indicated in parenthesis.

^aNon-significant differences with respect to 0% PG (Tukey test, $\alpha = 0.05$).

^bSignificant differences with respect to 0% PG (Tukey test, $\alpha = 0.05$).

Proposed mechanism: propylene glycol increases the partitioning of acyclovir from the drug product to the stratum corneum

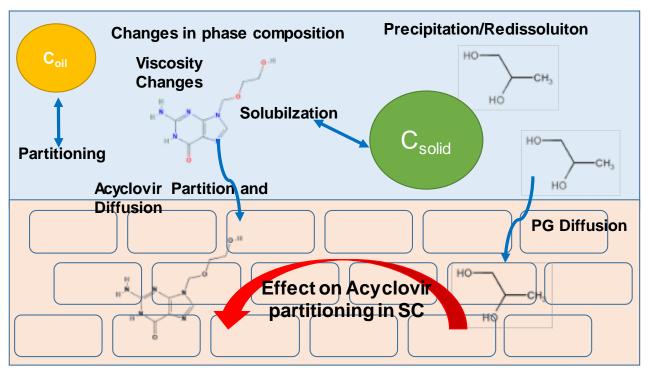

Partition and Diffusion Parameters of Acyclovir across various skin layers

Parameter	Value	Unit of measure	Method
Kp _{sc lipids:vehicle}	0.117	NA	Hansen 2013
K _{lip/v}	0.25	NA	Calc (DI ´EZ-Sales et al. 2005)
Kp _{sebum/water}	0.048	NA	Calc
K _{sebum/v}	0.101	NA	Calc (DI ´EZ-Sales et al. 2005)
Kp _{SC/VE} (forearm)	0.90	NA	Shatkin and Brown QSAR
Kp _{Dermis/VE}	0.765	NA	Modified Chen 2015
Kp _{Receptor:Dermis}	1	NA	Assumed
P _{corneocyte}	4.5E-05	cm/h	Assumed and Scalar Applied
Dsclip	5.9E-04	cm²/h	Johnson QSAR
Tortousity	2112.02	NA	Johnson QSAR
D _{Dermis}	0.00778	cm²/h	Modified Chen 2015
D _{ve}	0.00778	cm²/h	Modified Chen 2015
D _{subcutis}	0.00072	cm²/h	Johnson 1996
Fraction unbound in SC	0.194		Polak et al. 2016

Parameters in red includes the effect of propylene glycol on Acyclovir Permeation

IVPT Simulation – Simulation of 'Flow Through' Diffusion Cell 'Static Approach'

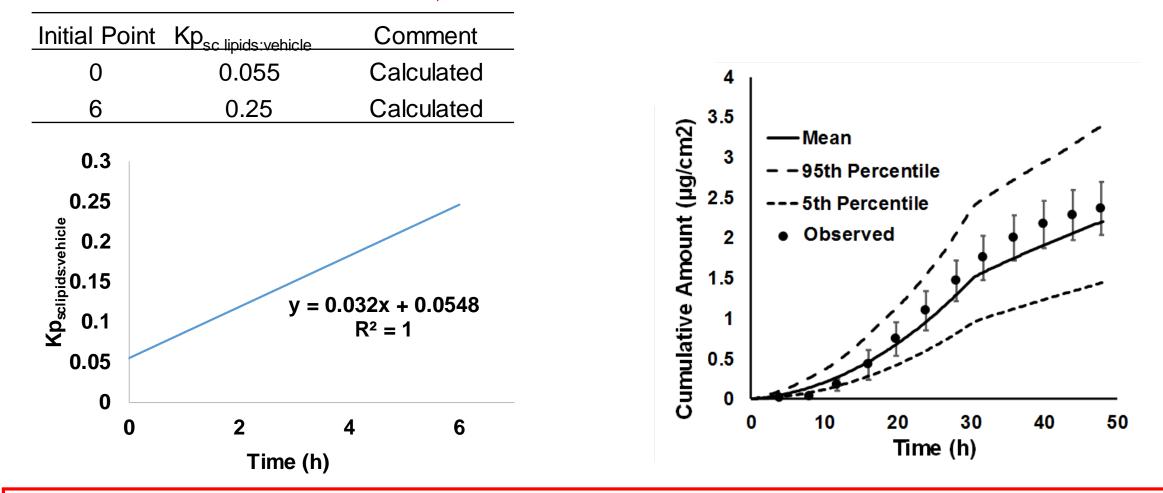
Simulations were carried out with 15 mg/cm² of formulation applied on a 1 cm² diffusional surface area. All simulations results are mean of 10 trials of 6 virtual donors (healthy volunteers, forearm as application site). Observed data (Mean \pm SE, n = 6) was obtained from Shin et al. 2015.

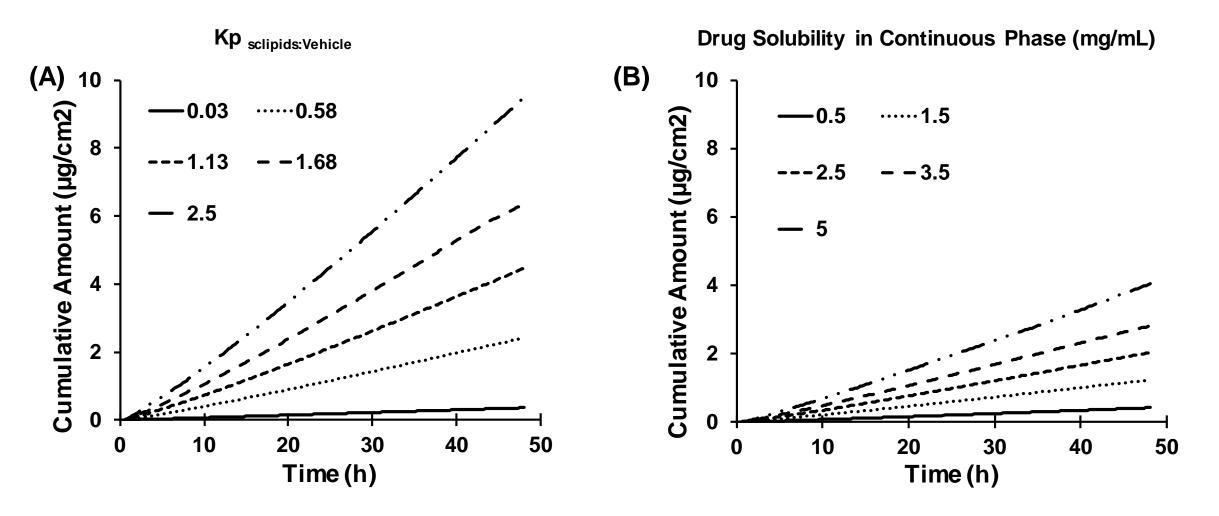


With 'Static Approach' the model was able to capture the extent of acyclovir permeation however the shape of the profile was not adequately captured

Semi-Mechanistic Modeling of Effect of Propylene Glycol on Acyclovir Permeation

Dynamic Process Happening During Product Metamorphosis


Vehicle Evaporation


Hypothesis: Propylene Glycol increases the partitioning of acyclovir from the drug product in the stratum corneum

IVPT Simulation – Simulation of 'Flow Through' Diffusion Cell 'Dynamic Approach'

A time dependent linear increase in the Kp_{sc lipids:vehicle} was considered for 30 hours owing to the hypothesized PG skin permeation

'Dynamic Approach' was able to capture both the rate and extent of *in vitro* acyclovir skin permeation from Zovirax Cream

Sensitivity analysis of the impact of the formulation to stratum corneum lipids ($Kp_{sc \ lipids: vehicle}$) partition coefficient (A) and of the acyclovir solubility (mg/mL) in the aqueous phase (B) on the cumulative acyclovir amount permeated in the receptor fluid. $Kp_{sc \ lipids: vehicle}$ was 0.25 and acyclovir solubility was 1.49 mg/mL in the final model.

Conclusions

- The current study, using a limited dataset, illustrates the potential utility of PBPK models in understanding and interpreting the impact of specific inactive ingredients on drug permeation across the skin.
- Improvement in model predictability of skin permeation of the active ingredient when accounting for an inactive ingredient effect underlines the need to consider the interplay between the drug substance and key inactive ingredient(s).
- Acyclovir partitioning from the formulation to stratum corneum lipids and solubility of acyclovir in the continuous phase of the formulation were found to impact the cumulative acyclovir accumulation in the receptor solution.

Simcyp

- James Clarke
- Farzaneh Salem
- Tariq Abdulla
- Arran Hodgkinson
- Santosh Kumar Puttrevu
- Krishna Chaitanya Telaprolu
- Susan Burkhill

US FDA

Sam Raney Markham Luke Andrew Babiskin Liang Zhao Lei K Zhang

Funding: US FDA Grant 1U01FD005225 and 1U01FD006522

Please feel free to send your questions at the following email address:

sumit.arora@certara.com

Questions?

