

# Research overview and regulatory experience on mechanistic modeling for generic dermatological drug products

2021 CRCG PBPK workshop Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches Day 1, Session 2: Modeling of Dermal Drug Products

#### Khondoker Alam, PhD

Pharmacologist

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, CDER | U.S. FDA September 30, 2021



# Disclaimer

# This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

#### **Overview**



- Scope of mechanistic physiologically-based pharmacokinetic (PBPK) modeling for alternative bioequivalence (BE) approaches for generic dermatological drug products
- Research roadmap towards developing mechanistic dermal PBPK models
- Use of dermal PBPK modeling and simulation approaches in regulatory space

# General BE Study Recommendations for Topical Dermatological Drug Products

FDA

- In Vitro characterization based BE approach
  - Qualitative (Q1) and Quantitative (Q2) Sameness or 'No Difference'
  - Physicochemical and Structural (Q3) Sameness/Similarity
  - IVRT (In Vitro Release Test)
  - IVPT (In Vitro Permeation Test)

#### • In Vivo study to demonstrate BE

- 1. In vivo comparative clinical endpoint BE study
- 2. Other in vivo studies -
  - A. BE study with PK endpoints
  - B. Vasoconstrictor study
  - C. Adhesion study
  - D. Skin irritation and sensitization study

# Use of Mechanistic Modeling to Establish BE of Topical Dermatological Drug Products

#### Comparative clinical endpoint BE study

- Relatively insensitive in detecting formulation differences
- Large variability in the observed response
- Relatively costly as it requires higher subject number
- Drug development to approval time is long

#### Model-integrated virtual BE study

- Agency welcomes innovative approach if the proposed approach satisfies requirements of applicable statues and regulations
- Bioavailability in local tissues can be compared between test and reference drug products
- Cost effective and allows faster drug
   development process

# Mechanistic Dermal Physiologically-based Pharmacokinetic (PBPK) Modeling





- Individual layer thickness and complexity
- Partition coefficient
- Diffusion coefficient



- Rheological properties
- pH, specific gravity
- Physicochemical properties
- Metamorphosis



- IVPT studies
- Skin biopsy
- Microdialysis
- Systemic PK data



#### Mechanistic PBPK model

6

# Dermal PBPK modeling to predict local and systemic bioavailability: Overview





API = Active pharmaceutical ingredient

### **Research Roadmap towards Developing Mechanistic Dermal PBPK Model**

#### Major research focus:

- Realistic description of skin physiology •
- Incorporating formulation attributes •
- Virtual BE of topical drug products •



8

#### Generic Drug User Fee Amendments (GDUFA)-Funded Research is Aimed to Close Knowledge Gaps



- Realistic description of skin physiology in in silico tools
  - Improve understanding on skin physiology in healthy and diseased populations
  - Develop and validate in silico healthy and diseased skin models
- Identify drug product-specific informative formulation attributes for semi-solid dosage forms
  - In vitro characterization of selected drug products
  - Incorporate formulation attributes in in silico tools
  - Define a safe space for drug product quality attributes
- Improve our understanding on interplay between skin physiology and drug product quality attributes
- Develop and validate in vitro, ex vivo, and in vivo methodologies that can be used to assess the in vitro and in vivo performance of drug products applied on the skin
- Develop and validate in silico tools
  - To establish in vitro-in vivo relationships (IVIVR) that can be used to predict unknown scenarios
  - To perform virtual BE assessment for topical drug products

#### www.fda.gov

### Generic Drug User Fee Amendments (GDUFA): Regulatory Science/Research



| Grant                                                                                                                                                                                                  | Grant Duration | Institute                             | Grant No.    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|--------------|
| Development and validation of dermal PBPK modelling platform towards virtual<br>bioequivalence assessment considering population variability                                                           | 2014-2018      | Simcyp, Ltd                           | 1U01FD005225 |
| Physiologically based biopharmaceutics and pharmacokinetics of drug products for dermal absorption in humans                                                                                           | 2014-2019      | University of South<br>Australia      | 1U01FD005232 |
| Characterization of key system parameters of mechanistic dermal PBPK models in various skin diseases and performance verification of the model using observed local and systemic concentrations        | 2018-2020      | Simcyp, Ltd                           | 1U01FD006521 |
| Assessment of Transdermal Drug Product Quality and Performance Attributes via<br>Enhanced Virtual Bioequivalence Simulations                                                                           | 2018-2020      | SimulationsPlus, Inc                  | 1U01FD006526 |
| Formulation drug product quality attributes in dermal physiologically-based pharmacokinetic models for topical dermatological drug products and transdermal delivery systems                           | 2018-2020      | University of<br>Queensland           | 1U01FD006522 |
| PBPK and Population Modeling Seamlessly Linked to Clinical Trial Simulation in an Open-<br>Source Software Platform                                                                                    | 2018-2021      | Children's Hospital of<br>Los Angeles | 1U01FD006549 |
| Progressing integration of in vitro topical formulation characterisation, release and permeation data to the next level - PBPK based extrapolation to bioequivalence assessment in virtual populations | 2021-2023      | Certara UK, Ltd                       | 1U01FD007323 |
| Dermal Drug Product Quality and Bioequivalence Assessment through Advanced MAM and PBPK Simulation                                                                                                     | 2021-2023      | SimulationsPlus, Inc                  | 1U01FD007320 |

### Research Aiming to Develop Mechanistic Dermal PBPK model







#### www.fda.gov

#### **Key Outcomes From GDUFA-Funded Research**

- Development of mechanistic dermal PBPK model: skin physiology and formulation attributes
- Development of skin disease model, e.g., acne/comedone, atopic dermatitis, psoriasis
- Developing IVPT module: model IVPT study results
- Developing vasodilation model: vasodilation/constriction in the dermis
- Enabling "Two Sites" for the application of drug product to resemble real life scenarios, e.g., apply topical product to face and shoulder simultaneously
- Incorporating inter- and intra-subject variabilities

To improve the predictive power of dermal PBPK model

To increase confidence on the model to perform virtual BE assessments



### **Dermal PBPK Modeling: Research Focus in FY21**



#### RFA-FD-21-019

|                                                                                                                                                                      | Dermal Physiologically-based Pharmacokinetic<br>(PBPK) Models Accounting for the Absorption<br>and Evaporation of Vehicle/Co-solvent<br>following the Application of Generic<br>Dermatological Products (U01) |                                                                                            | Absorption: Change i<br>and its effect on API<br>Evaporation: Metam<br>formulation       | Absorption: Change in skin physiology<br>and its effect on API permeability<br>Evaporation: Metamorphosis of<br>formulation |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                      |                                                                                                                                                                                                               |                                                                                            |                                                                                          |                                                                                                                             |  |
| Mechanistically describe skin<br>permeation of active and inactive<br>ingredients.<br>Enable model integrating in vitro and in<br>vivo data obtained experimentally. | To improve<br>PBPK mod                                                                                                                                                                                        | existing dermal<br>del/platform                                                            | Enable PBPK model t<br>metabolism and/or p<br>with the aim to track<br>and metabolites   | o account skin<br>otential transport<br>down both parent                                                                    |  |
| RFA-FD-21-013                                                                                                                                                        |                                                                                                                                                                                                               | RFA-F                                                                                      | D-21-018                                                                                 |                                                                                                                             |  |
| Physiologically-based pharm<br>models to aid the develop<br>dermatological proc                                                                                      | nacokinetic (PBPK)<br>oment of generic<br>lucts (U01)                                                                                                                                                         | Quantify the express<br>enzymes and transport<br>and <u>skin</u> tissue in releve<br>humar | ssion of metabolizing<br>ter proteins in lung, eye<br>vant animal models and<br>ns (U01) |                                                                                                                             |  |
| www.fda.gov *PEA - Request for Applicat                                                                                                                              | ions                                                                                                                                                                                                          |                                                                                            |                                                                                          | 13                                                                                                                          |  |

\*RFA = Request for Applications

#### **Use of Dermal PBPK Model in Regulatory Space**

- Model-integrated evidence for generic drug development and approval
  - Support alternative bioequivalence (BE) approaches, e.g., virtual BE studies
  - Define a safe space for critical attributes
  - Extrapolate bioavailability predictions and BE assessments from healthy to diseased populations
- Making informed regulatory decision in the review of ANDA, preANDA, controlled correspondence, citizen petition etc.
- Product-specific guidance (PSG) development and other regulatory research





\* still ongoing

#### Science and Research Report: Locally-acting PBPK modeling





CENTER FOR DRUG EVALUATION AND RESEARCH

#### SCIENCE AND RESEARCH REPOR



Topical Dermatological Products
https://www.fda.gov/media/146749/download#page=122

#### Locally-Acting Physiologically-Based Pharmacokinetic Modeling

#### Summary of FY2020 Activities

One of the main objectives of this research is to continue to work with external experts to develop and advance mechanitic-based modeling, such as physiologically-based plasmacokisetic (PBFK) modeling and computational fluid dynamics (CFD), is order to better inform the role that product properties play on local bioavailability. In total, modeling apecific to locally-acting product modeling and platform advancements was part of 38-sparts external approxite (i.e., contracts and grants) in FY0020 – 4 of which were imitated in FY0020 or at the end of FY019.

In the complex injectable area (see P/2020 GOURA Science and Research Report: Complex injectables, Formulations, and Nonomaterials), one contract (574-0119C:10139) was awarded that aims to utilize a model-informed drug development approach (rigue) 10 or enhaltability anomaterial specials, (rigue) 10 or enhaltability anomaterials (eg., lipoxomal drug products). The contract intends to develop an in-silico systems based multiscale model to capture various biological and physicochemical events that affect the transport and residence of nanoparticles (PP) and Its cargo active pharmaceutical ingredient (AP).

https://www.fda.gov/media/146749/download#page=60

- Summary of research activities
- Research projects and collaborations
  - New, continuing and completed grants/contracts
  - Active FDA research
- Articles, posters, presentations

### Take home messages

- PBPK model-based virtual BE is an innovative alternative approach for the approval of dermal drug products
- GDUFA-funded research is set for continuous improvement of dermal PBPK model or modeling platform –
  - o To improve the predictive power of dermal PBPK model
  - o To increase confidence on the model to perform virtual BE assessments
- Mechanistic dermal PBPK modeling is used
  - o by the applicants to support their drug development and approval process
  - o by the Agency to make informed regulatory decisions
- Academia/industry/software developing companies are encouraged to follow 'Notice of funding opportunity' to work with the Agency to achieve critical mission of GDUFA

# Acknowledgments

FDA/CDER

OGD/ORS/DQMM Eleftheria Tsakalozou Andrew Babiskin Ross Walenga Mingliang Tan Lucy Fang Liang Zhao

OGD/ORS/DTP I Priyanka Ghosh Tannaz Ramezanli Mengmeng Niu Markham Luke OGD/ORS-IO Lei Zhang Robert Lionberger Sam Raney



www.fda.gov/GDUFARegScience



# **Questions?**

Khondoker Alam, PhD Khondoker.Alam@fda.hhs.gov

Division of Quantitative Methods and Modeling Office of Research and Standards, Office of Generic Drugs CDER | U.S. FDA

