Influence of Metamorphosis on the Performance of Topical Formulations

March 26, 2021

Srinivas Ajjarapu

Skin and drug permeation through skin

Percutaneous Flux, $\boldsymbol{J} \propto \frac{\alpha. \boldsymbol{D}}{\boldsymbol{h}}$

- α Thermodynamic activity
- *D* diffusivity
- *h* –Thickness of the membrane

API related factors affecting permeation

- Molecular weight
- Partition co-efficient
- Ionization (pKa)
- Melting point
- Solubility
- Number of hydrogen bonding groups

Formulation factors influencing drug permeation through skin (CQA)

pH of the formulation

Rheological Behavior

Rate of dissolution of drug

- Particle Size
- Polymorphic form
- Morphology of particles

Solvent Activity (a_w)

 $a_w = \rho / \rho_0$

- ρ = Partial vapor pressure of solvent in the product
- ρ_0 = Vapor pressure of pure water

Globule Size

In Vitro Permeation Testing

• No evaporation

- No change in composition
- Drug concentration change is negligible
- No change in CQA

Metamorphosis

Phases of Metamorphosis

Primary Phase

Secondary Phase

Intense Rubbing

- Solvent loss due to evaporation
- Solvent that is absorbed from the atmosphere
- Solvent penetration into the skin ۲
- Solvent that could potentially get incorporated from skin.

Fundamental factors that govern topical dosage form performance

7

Solvent Evaporation and Precipitation of Acyclovir

Crystal pattern in gels after drying

(Prasco)

1 (Tolmar)

2 (Taro)

Differential Scanning Calorimetry

Dependence of dose on drying rate and its effect on performance

Impact of changes in the degree of saturation during metamorphosis of topical formulations on drug permeation

- It is seen that in some cases, the products that are compositionally different could match in their performance.
- Often, we also observe that in formulation that are compositionally same, the performance is different due to difference in rates of drying despite most of the Q3 characteristics are matching between them.
- Can we explain these kind of situations based on the change in degree of saturation with time?

Impact of changes in the degree of saturation during metamorphosis of topical formulations on drug permeation

Effect of viscosity on drug permeation for binary solvent systems

PEG 200:Water	Viscosity (mPa.S)	Solubility (mg/ml)	Conc (mg/ml)	Degree of Saturation (α)
15:85	1.09	10.15 ± 0.67		0.74
35:65	1.49	11.62 ± 0.31	7.50	0.65
65:35	8.55	14.27 ± 1.22		0.53
85:15	17.55	22.99 ± 0.36		0.33
15:85	1.09	10.15 ± 0.67	5.08	
35:65	1.49	11.62 ± 0.31	5.81	0.50
65:35	8.55	14.27 ± 1.22	7.14	0.50
85:15	17.55	22.99 ± 0.36	11.50	

Effect of viscosity on drug permeation for binary solvent systems

Degree of saturation: varied, Viscosity : varied

Flux increased with increase in degree of saturation Flux increased with decrease in viscosity

Degree of saturation: constant, Viscosity : varied

Flux remained constant with same degree of saturation solutions though viscosity varied

Impact of changes in the degree of saturation during metamorphosis of topical formulations on drug permeation

at

points

Impact of changes in the degree of saturation during metamorphosis of topical formulations on drug permeation

metronidazole during evaporative metamorphosis

Segment to Segment Correlation (Finite dose IVPT)

Effect of surfactant on quality and performance attributes

- Four creams with metronidazole as model drug
- Varied Tween concentration (± 5%w/w)
- Similar in the all the critical quality attributes pH, water activity, viscosity, globule size, in vitro drug release rate

Sharma, Purnendu Kumar, A. Panda, S. Parajuli, RM Badani Prado, S. Kundu, M. A. Repka, E. Ureña-Benavides, and S. Narasimha Murthy. "Effect of surfactant on quality and performance attributes of topical semisolids." *International Journal of Pharmaceutics* 596 (2021): 120210.

- Complex formulations
- Gels using different drugs
- Improvise the methodology by determining
- The drug concentrations simultaneously from the donor chamber
- Analyzing the composition of formulation by direct analysis

pH could change after application on the skin

Product	рКа	% Unionized		
		Initial	After one hour	
Clotrimazole	6.6	43.1% (pH 6.5)	7.1% (pH 5.5)	
Lidocaine	7.9	20.1% (pH 7.3)	2.5% (pH 6.3)	

Conclusion

- It is important to investigate the Critical Quality Attributes of topical formulation to understand the performance
- Critical quality attributes will not remain the same due to metamorphosis
- Tools to access the time course in change in different quality attributes
- In case of metronidazole products, the performance was dependent on the degree of saturation
- Further studies need to be performed if this work can be extended to complex products for proving equivalence between 2 products

Acknowledgments

- Dr. S. Narasimha Murthy
- Dr. Srinath Rangappa
- Dr. Howard Maibach
- Dr. Esteban Ureña-Benavides
- Dr. Santanu Kundu
- Dr. Michael A. Repka
- Dr. Peter Wildfong
- Murthy's Lab

- Dr. Sam Raney
- Dr. Priyanka Ghosh
- Dr. Megan Kelchen
- Dr. Tannaz Ramezani
- Dr. Elena Rantou
- Dr. Mark Donelly
- Dr. Ross Walenga
- Dr. Markham Luke
- FDA group

Grant Support : USFDA 1U01FD005223 USFDA 1U01FD006507

Sommunities

AAPS Topical and Transdermal Community

How to Ask A Question...

NOTE:

If you do not <u>associate</u> your call in phone <u>number your web login</u> then you may not be able to click on the button in the bottom left to ask a question during the Q&A Session

Click this icon or dial *6 to get in the queue to ask a question.