CORRELATIVE RAMAN AND MASS SPECTROSCOPIC IMAGING TO OUANTIFY DRUG DELIVERY INTO THE SKIN

P. Zarmpi^{1*}, M.A. Maciel-Tabosa¹, P. Vitry¹, N.A. Belsey², J-L. Vorng², D. Tsikritsis², T.J. Woodman¹, K.A.J. White¹, A.L. Bunge³, M.B. Delgado-Charro¹, R.H. Guy¹

¹Department of Pharmacy and Pharmacology, University of Bath, Bath, UK. ² National Physical Laboratory, Teddington, UK.

RESULTS

³Department of Chemical and Biological Engineering, Colorado School of Mines, USA.

PURPOSE

- · Methods to assess drug bioavailability (BA) in skin indirectly infer rate and extent of delivery.
- · Confocal Raman spectroscopy can track drug penetration into viable skin beneath stratum corneum (SC).
- However, robustness of Raman data requires. independent validation with correlative techniques

OBJECTIVES

To demonstrate and confirm, using independent imaging methods, that confocal Raman can quantify drug input into skin.

METHODS

- Skin samples (pig abdominal) were used in vitro.
- 6-hour application of fully or 25% saturated (170 or 42.5 mg/mL) 4-cyanophenol (CP; selected for its strong Raman signal in the infrared-transparent frequency range of the skin) in 50:50 v/v water/propylene glycol.
- Post-treatment, formulations removed, and skin surface cleaned.
- Confocal Raman spectra acquired with Renishaw inVia microscope (785 nm laser).
- CP signal (C≡N vibration, 2230 cm⁻¹) normalised by corresponding amide I intensity at 1650 cm⁻¹.
- Normalised CP intensities converted to concentrations using calibration curve generated in a rehydrated lyophilised pig skin powder model.
- Stimulated Raman Scattering (SRS) images acquired with Leica SP8 microscope.
- CP disposition in the skin assessed 'top down' and in 'side-view' 30 µm thick cryotomed cross-sections.
- Signals acquired from C≡N and amide I, from CH₂ (skin lipids, 2850 cm⁻¹), and second harmonic generation (SHG) from collagen.
- CP signal again normalised using amide I.
- Secondary Ion Mass Spectrometry (SIMS) IONTOF ToF SIMS 5 in negative polarity mode.
- CP signals recorded at 118.04 m/z (distinct from any tissue related molecule/fragments).

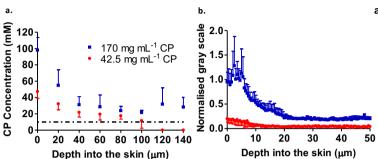
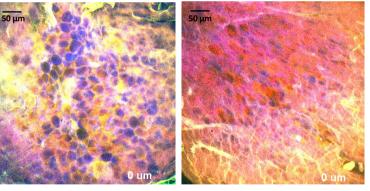



Figure 1: a. Confocal Raman spectroscopic quantification of CP uptake into skin as a function of depth from two formulations (mean + SD; n = 6 replicates of skin samples from 1 pig). Dashed line = CP LOQ based on the Raman signal to noise ratio.

Figure 1: b. 'Top down' SRS: CP uptake into skin as a function of depth.

Animation 1: 'Top down' SRS imaging (CP = yellow, amide I = blue, CH₂ = red, SHG = green) of skin post application of the fully (left) and 25% (right) saturated CP formulations.

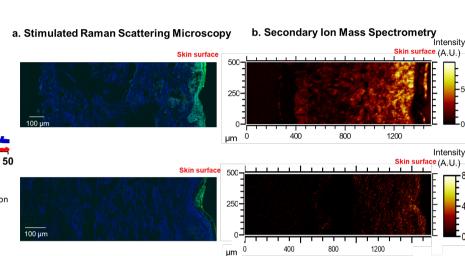


Figure 2: a. SRS (CP = green, amide I = blue) images of skin cross-sections post-application of fully (top) and 25% (bottom) saturated CP formulations.

Figure 2: b. SIMS images of the same skin cross-sections.

'Top-down' approach

- Confocal Raman and SRS imaging can detect CP to skin depths encompassing at least the epidermis (Figure 1, Animation 1).
- Depth profiles are consistent with and distinguish between the BA of CP from two different formulations
- Additional work is needed to better understand and control sources of variability, and to minimise effect of background interference on Raman measurements.

Cross-section ('side-view') approach

- Cross-section imaging (SRS and SIMS) avoided sensitivity loss due to signal attenuation as a function of depth.
- Relatively high levels of CP in SC confirmed as well as greater uptake of chemical into epidermis from fully saturated solution (Figure 2).

CONCLUSIONS

- Raman spectroscopy is shown to be a potentially useful method to assess drug penetration into skin (and beyond the SC) and to compare performance of different formulations.
- Correlative imaging can provide evidence to support future application of Raman spectroscopy for the assessment of topical BA (and bioequivalence) in vivo

ACKNOWLEDGMENT

This research is supported by the U.S. Department of Health & Human Services, Food & Drug Administration (1-U01-FD006508 and 1-U01-FD004947). The views expressed in this presentation do not reflect the official policies of the U.S. FDA or the U.S. DHHS; nor does any mention of trade names, commercial practices, or organization imply endorsement by the U.S. Government.

-50