

Introduction

The goal of this study is to discriminate liposome manufacturing and product compositional differences by measuring doxorubicin (DOX) release from liposomal formulations (L-DOX) using a USP-4 apparatus release assay.

	L-DOX lot #	Average size (nm)	Formulation description
MLV preparation technique effect	L-DOX-1	95.3 ± 0.6	Lipids pipetted into stirring ammonium sulfate over 10s
	L-DOX-2	82.9 ± 1.0	Lipids are high pressure injected into stirring ammonium sulfate
	L-DOX-3	83.6 ± 0.6	Lipids are poured into stirring ammonium sulfate
Extruded liposomes particle size effect	L-DOX-4	82.0 ± 0.7	Small size
	L-DOX-5	113.4 ± 0.5	Medium size
	L-DOX-6	125.5 ± 1.0	Large size
Homogenized liposome size effect	L-DOX-7	77.3 ± 0.2	Homogenized, 1 pass
	L-DOX-8	66.5 ± 0.8	homogenized, 2 passes
	L-DOX-9	65.8 ± 0.5	homogenized, 3 passes
Drug to lipid ratio effect	L-DOX-10	84.4 ± 0.7	drug to lipid ratio = 123 (g DOX per mol PL)
	L-DOX-11	85.9 ± 1.5	drug to lipid ratio = 143 (g DOX per mol PL)
	L-DOX-12	84.5 ± 0.1	drug to lipid ratio = 166 (g DOX per mol PL)
	L-DOX-13	84.2 ± 0.2	drug to lipid ratio = 186 (g DOX per mol PL)
Cooling rate following drug loading effect	L-DOX-14	86.1 ± 1.5	cooled in iced bath after drug loading
	L-DOX-15	86.2 ± 1.8	cooled from 60 °C to RT in water after drug loading
	L-DOX-16	85.0 ± 0.7	cooled to RT in air after drug loading
	L-DOX-17	84.9 ± 0.6	cooled to RT in water after drug loading
	L-DOX-18	84.3 ± 0.8	cooled 4 $^{\circ}$ C in water after drug loading
POPC-L-DOX	POPC-L-DOX	84.2	HSPC is replaced with POPC
Doxil [®]	Doxil [®]	87.4 ± 0.9	
Lipodox	Lipodox	76.2 ± 0.2	Liposomal Doxorubicin by Sun Pharma

Methods

The effect of different manufacturing processes such as extrusion vs. homogenization, liposome multi-lamellar vehicles (MLV) preparation techniques and the number of extrusion/homogenization on DOX release profiles were examined in USP-4 flowthrough release assay. Doxorubicin liposomes (L-DOX) were placed in the dialysis tubes and inserted in flow-through cells of USP-4 apparatus CE7-smart (Sotax[®]). The release kinetics was examined at 45° C for 24h in the media containing 100 mM NH₄HCO₃, 5% w/w of hydroxypropyl-cyclodextrin (HP-CD), 75 mM MES, 5% sucrose and 0.02% NaN_3 (pH 6).

This project was supported by FDA grant U01 FD004893

Comparison of drug release profiles of doxorubicin liposomes prepared by different processes

Wenmin Yuan¹, Rui Kuai¹, Zhipeng Dai² Jie Tang^{1,3}, Nan Zheng⁴, Wenlei Jiang⁴, Charles Noble², Mark Hayes², Francis C. Szoka^{2, 5} and Anna Schwendeman¹ ¹Department of Medicinal Chemistry and the Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan; ² ZoneOne Pharma, Inc., San Francisco, California;

Figure 2. Picture of USP 4 apparatus CE7-smart (SOTAX[®]) dissolution system

condition.

³School of Bioengineering, Xihua University, Chengdu, China;

⁴ Office of Generic Drugs, Food and Drug Administration, Silver Spring, Maryland;

⁵Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California

Results

Figure 4. Comparing the release profile of DOX liposomes prepared by different manufacturing processes. A. Effect of MLV preparation technique; B. Effect of Extruded liposomes particle size; C. Effect of homogenized liposome size; D. Effect of drug to lipid ratio; E. Effect of cooling rate. The result revealed that, extruded liposome size and drug/lipid ratio significantly affected DOX release profiles as determined by the optimized USP-4 release assay.

The USP-4 release assay was used to discriminate differences in drug release from doxorubicin liposomes that were prepared by different processes. It was revealed that liposome size and drug/lipid ratio significantly affected the in vitro drug release profile using the USP-4 release assay. The established USP-4 release method can be used to distinguish possible differences between generic and innovator L-DOX and guide the design of generic products.

Conclusion

