M2126

Modeling In Vitro and In Vivo Human Skin Permeation of Eutectic Mixtures of Local Anesthetics Using PBPK Modeling: Development of Dermal IVIVE for Lidocaine 2.5% w/w and Prilocaine 2.5% w/w Cream (EMLA® Cream)

K. C. Telaprolu¹, S. Polak^{1, 2}, E Tsakalozou³, P. Ghosh³, K. Alam³, M. Dabbaghi⁴, S. Namjoshi⁴, Y. Mohammed⁴, J. Grice⁴, M.S. Roberts⁴

¹Certara UK Ltd, Simcyp Division, Sheffield, UK; ²Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland ³Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA, ⁴Therapeutics Research Centre, Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia

CONTACT INFORMATION: krishna.chaitanyatelaprolu@certara.com

PURPOSE

The purpose of this work is to describe skin absorption of active ingredients from eutectic mixture formulations using the Multi-Phase Multi-Layer Mechanistic Dermal Absorption (MPML MechDermA) in vitro skin permeation testing (IVPT) module within the Simcyp simulator (V20). An In Vitro – In Vivo Extrapolation (IVIVE) approach was used to derive critical kinetic parameters by modelling IVPT results of EMLA® cream (eutectic mixture of lidocaine 2.5% w/w and prilocaine 2.5% w/w) and the data were extrapolated towards the development of a Physiologically-Based Pharmacokinetic (PBPK) model to predict the systemic exposure of both lidocaine and prilocaine following topical application of the cream in humans.

METHOD(S)

The full-body PBPK models of lidocaine and prilocaine were developed by characterizing the distribution and elimination of both molecules from the pharmacokinetic (PK) data of intravenous (IV) bolus dosing [1, 2]. The developed models were validated using an external set of data of IV dosing [3, 4] as shown in Figure 1. Formulation-related parameters were collected from various literature sources and incorporated into the PBPK models to parametrize the emulsion model as shown in Table 1. IVPT data [5, 6] for EMLA® cream and plasma profiles following in vivo topical cream application were also collected [7]. The simulations of IVPT profiles were conducted by matching the experimental details (application site: abdomen; membrane type: epidermis; cell type: static) and were verified against experimental IVPT data [5, 6]. Partition and diffusion coefficients of both molecules in different skin layers were either predicted using Quantitative Structure Activity Relationships (QSAR) or experimentally measured (Table 2). Evaporation was assumed to be negligible as the IVPT experiments were carried out with partial occlusion and the thickness of the applied formulation was high. As both molecules are highly ionisable at skin surface pH, results are explained by manual optimization of formulation pH to 7.6 to calculate fraction non-ionized on the skin surface. This assumption of using formulation pH 7.6 was supported by Maurya et al. [8] where pH buffering of the applied formulation, when applied as thin film, is shown for products of various pH ranges. The in vitro model parameters were then used to extrapolate and predict in vivo scenarios accounting for all reported clinical study details such as the thigh as body site, and verified against systemic PK parameters [7]. For in vivo studies, native pH of formulation, i.e., 9.17, was used in the simulations as the study was conducted under occlusion conditions.

TABLE 1: Param

Formulation Si

Density of form Viscosity @0.0 Formulation pl Drug Solubility (ma/mL)

Volume of Disp Dispersed/Col Droplet Size (µr **Evaporation P Precipitation Mo**

FIGURE 1: Obse and (b) 86.5 mg 214.5 mg IV infu

	Lideesi			Source of	Parameter	Lidocaine	Prilocaine	Literature Source/QSAR	
	LIGOCAI	ne	Information/Comment			Partition Coefficients			
ation Option	Emulsion, A dissolve	API fully Ved dissolved		NA	SC lipid: water Kp		29.33	Measured for Lidocaine and predicted by Hansen 2013* for	
tion (a/cm ³)	1 1 1 $[7]$		[7]	CO limida vehicle Kr		Prilocaine			
shear rate (cP)	1 62F+(77	1 62F+07	Measured	SC lipid: venicle Kp	23.99	29.33	Predicted	
	9 17		9 17	[5]	Sebum: water Kp	52.07	35.89	Yang 2018 [*]	
Continuous Phase					Sebum: vehicle Kp	52.07	35.89	Predicted	
	3.52		6.67	Solubility at pH 10.35 [11]	SC: viable epidermis Kp	3.74	3.48	Shatkin and Brown 1991*	
ed Phase (%)	5		5	[7]	Dermis: viable epidermis Kp	0.22	0.25	Modified Chen 2015*	
ous Phase ratio	e (70) 5		4 56	[9]	Dermis: sebum Kp	0.025	0.0279	Calculated	
	0.109		0.109	[9]	Receptor: membrane Kp	0.77	0.99	Modified Chen 2015* (Applie for IVPT only)	
2	Not active	ated	Not activated	Study carried under occlusion	Dermis: blood Kp	1.993	1.77	Shatkin and Brown 1991*	
	Not activated		Not activated	tudy carried under occlusion	Muscle: subcutis Kp	1		Model default	
				Blood: muscle Kp	1		Model default		
ed (mean) and simulated	plasma conce	entration	profile of lidoca	ine (a) 1mg/kg of bolus dose [1];	Blood: subcutis Kp	1		Model default	
f bolus dose [3]; Observe	ed (mean) and	l simulat	ted plasma conc	entration profile of prilocaine (c)	Diffusion Coefficients				
on dose [2]; and (d) 200 m ⁽	g IV bolus [4].				SC lipid	0.000570	0.000603	Johnson 1996*	
					Viable epidermis	0.004257	0.00587	Modified Chen 2015*	
					Dermis	0.004257	0.00587	Modified Chen 2015*	
Sustamic concentration in placma of Li-	locaine a	Mean Values of Systemic concentration in blo	oncentration in blood of Lidocaine over b	Sebum	0.000694	0.00073	Johnson 1996*		
systemic concentration in plasma of Lik				lime				O_{ab} = $L_{AOOC} \times (I) (DT)$	
over Time					Buffer	0.030	0.030	Schiedel 1995° (IVPT)	
over Time		1.00E-	+02]		Buffer Subcutis	0.030 1E-05	0.030 1E-05	Model default	
over Time		1.00E	+02		Buffer Subcutis Muscle	0.030 1E-05 1E-05	0.030 1E-05 1E-05	Model default Model default	
over Time		1.00E	+02		Buffer Subcutis Muscle	0.030 1E-05 1E-05 Other Paran	0.030 1E-05 1E-05 neters	Model default Model default	
over Time		1.00E- (7/Bm)	+02 -		Buffer Subcutis Muscle fu _{se} (Fraction Unbound in SC)	0.030 1E-05 1E-05 Other Paran 0.157	0.030 1E-05 1E-05 neters 0.171	Schlebel 1995* (IVPT) Model default Model default Polak et al. 2018 [10]	
over Time		1.00E 1.00E	+01		Buffer Subcutis Muscle fu _{sc} (Fraction Unbound in SC) Corneocyte membrane permeability	0.030 1E-05 1E-05 Other Paran 0.157 1E-07	0.030 1E-05 1E-05 neters 0.171 1E-07	Schlebel 1995* (IVPT) Model default Model default Polak et al. 2018 [10] Optimized	
over Time		1.00E 1.00E	+02		Buffer Subcutis Muscle fu _{sc} (Fraction Unbound in SC) Corneocyte membrane permeability Fraction non-ionized in corneocytes	0.030 1E-05 1E-05 Other Paran 0.157 1E-07 0.08	0.030 1E-05 1E-05 neters 0.171 1E-07 0.08	Schlebel 1995* (IVPT) Model default Model default Polak et al. 2018 [10] Optimized Predicted	
over Time		1.00E 1.00E 1.00E		2.0 4.0	Buffer Subcutis Muscle fu _{sc} (Fraction Unbound in SC) Corneocyte membrane permeability Fraction non-ionized in corneocytes Fraction non-ionized at skin surface	0.030 1E-05 1E-05 Other Paran 0.157 1E-07 0.08 0.35 (IVPT)	0.030 1E-05 1E-05 neters 0.171 1E-07 0.08 0.34 (IV/PT)	Schlebel 1995* (IVPT) Model default Model default Polak et al. 2018 [10] Optimized Predicted Assumption: using formulation	
over Time		1.00E 1.00E 1.00E		2.0 4.0	Buffer Subcutis Muscle fu _{sc} (Fraction Unbound in SC) Corneocyte membrane permeability Fraction non-ionized in corneocytes Fraction non-ionized at skin surface	0.030 1E-05 1E-05 Other Paran 0.157 1E-07 0.08 0.35 (IVPT) 0.95 (in vitro)	0.030 1E-05 1E-05 neters 0.171 1E-07 0.08 0.34 (IVPT) 0.95 (ip vivo)	 Schlebel 1995* (IVPT) Model default Model default Polak et al. 2018 [10] Optimized Predicted Assumption: using formulation pH as skin surface pH 	

Tortuosity *QSAR model.

TABLE 3a: Observed (mean, median for Tmax) versus predicted PK parameters of lidocaine following application of the EMLA® cream. The clinical PK study used for model performance assessment was described in the prescribing information. Simulation conditions were selected to mimic the clinical PK study.

Jaaps

arameter	Observed	Predicted	Fold Error (predicted/observed)
uration of Application 3 hours			
_{max} (µg/mL)	0.12	0.13	1.1
_{max} (hrs)	4	3.59	0.90
mount absorbed (mg)	54	43.1	0.80
uration of Application 24 hours			
_{max} (μg/mL)	0.28	0.17	0.61
_{max} (hrs)	10	10.02	1
mount absorbed (mg)	243	223	0.92

TABLE 3b: Observed (mean, median for Tmax) versus predicted PK parameters of prilocaine following application of the EMLA® cream. The clinical PK study used for model performance assessment was described in the prescribing information. Simulation conditions were selected to mimic the clinical PK study.

Observed	Predicted	Fold Error (predicted/observed)
0.07	0.13	1.86
4	3.41	0.85
92	52.89	0.57
0.14	0.15	1.07
10	5.70	0.57
503	265	0.53
	Observed 0.07 4 92 0.14 10 503	Observed Predicted 0.07 0.13 4 3.41 92 52.89 0.14 0.15 10 5.70 503 265

TABLE 4: Predicted (Mean \pm SD n = 40 10 trials of 4 individuals) versus observed flux (Mean \pm SD n = 4 to 5) at two dosing conditions being within two-fold error

ose of Drug (mg)	Flux (µç	g/cm²/hr) Lidoo	caine	Flux (µg/cm²/hr) Prilocaine			
	Observed	Predicted	Fold Error	Observed	Predicted	Fold Error	
2.5	12.21 ± 1.81	15.81 ± 2.71	1.30	15.30 ± 2.15	20.44 ± 2.87	1.34	
	16.34 ± 0.83	15.55 ± 2.59	0.95	21.45 ± 1.31	20.06 ± 2.76	0.94	

RESULT(S)

Figure 1 shows that distribution and elimination parameters used to describe the systemic disposition of Lidocaine and Prilocaine were able to predict internal (Figures 1a and 1c) and external datasets (Figures 2b and 2d). Figure 2 shows that the predicted in vitro cumulative receptor solution profile of EMLA® cream were matching the observed profiles for both molecules. In addition, the predictability of the model was further assessed using the same IVPT setup but under different dosing conditions. The predicted flux was within a 2-fold error (Predicted/Observed) as shown in Table 4. Tables 3a and 3b show that, the mean values of all the in vivo predicted primary PK parameters and drug amount absorbed were within the two-fold error of observed data for two application durations as described in the prescribing information for EMLA® cream [7].

CONCLUSION(S)

This study shows that skin permeation from eutectic mixtures can be predicted using in silico methodologies if drug product attributes are taken into account. The current study shows the utility of modelling IVPT experiments for mechanistic understanding, and interpreting the observed IVPT data. The key kinetic parameters derived by modelling IVPT experiments were used to predict the systemic pharmacokinetics and generate population predictions using the MPML MechDermA model. This dermal IVIVE approach may be used to predict drug permeation in the drug discovery setting, advance development of topical dermatological drug products and potentially in bioequivalence assessment for generic dermatological products.

REFERENCES

et al., Cvtochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther. 2004. **75**(1): p. 80-8 Simon, M.A., et al., Comparison of the disposition kinetics of lidocaine and (+/-)prilocaine in 20 patients undergoing intravenous sthesia during day case surgery. J Clin Pharm Ther, 1997. 22(2): p. 141-6. Bennett, P.N., et al., Pharmacokinetics of lidocaine and its deethylated metabolite: dose and time dependency studies in man. J Pharmacokinet Biopharm, 1982. 10(3): p. 265-81. Arthur, G.R., et al., Pharmacokinetic and clinical pharmacological studies with mepivacaine and prilocaine. Br J Anaesth, 1979. 51(6): p. 481-5 Fiala, S., et al., New insights into eutectic cream skin penetration enhancement. Int J Pharm, 2016. 499(1-2): p. 403-411. Fiala, S., M.B. Brown, and S.A. Jones, Dynamic in-situ eutectic formation for topical drug delivery. J Pharm Pharmacol, 2011. 63(11): p. 1428-36 Actavis Pharma, I. EMLA CREAM (lidocaine 2.5% and Prilocaine 2.5%). 2018 17/08/2016; Available from: https://www.accessdata.fda.gov/drugsatfda docs/label/2018/019941s021lbl.pdf. A. Maurya, A.S., S.G. Raney, P. Ghosh, M.A. Repka, S.N. Murthy, The pH of Topical Creams can Change Rapidly Following Application on the Skin In Vivo, in 2016 AAPS Annual Meeting and Exposition. 2016: Denver. Nvovist-Maver. A.A., A.F. Brodin, and S.G. Frank, Phase distribution studies on an oil-water emulsion based on a eutectic mixture of lidocaine and prilocaine as the dispersed phase. J Pharm Sci, 1985. **74**(11): p. 1192-5. 10. Polak, S. & Patel, N.K. 2018. Combining machine learning and mechanistic modeling approaches to solve real life problems assessment of the local tissue binding and its influence on the systemic exposure after topical application of drugs. American Conference on Pharmacometrics. Fort Lauderdale, Florida, USA. Brodin, A., et al., Phase diagram and aqueous solubility of the lidocaine-prilocaine binary system. J Pharm Sci, 1984. 73(4): p. 481-4. This project was supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS) as part of a financial assistance award [FAIN] U01FD006522 totalling \$250,000 with 100 percent funded by FDA/HHS. The contents are those of the author(s) and do not necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government. This poster reflects the views of the author and should not be construed to represent FDA's views or policies.

