Fasted-State Motility-Dependent Gastric Emptying and Plasma Level Variation: **Bioequivalence Implications for BCS Class I Drugs**

A. Talattof, G. L. Amidon Department of Pharmaceutical Sciences, University of Michigan

Purpose

Fasted-state cyclical contractions associated with gastrointestinal motility transport content from the stomach into the small bowel in a pulsatile manner, influencing the concentration presented at the absorption site. In the case of high solubility/ permeability (BCS Class I) drugs, this physiological factor presents a source of inter- and intra-subject variability affecting plasma levels, thus having bioequivalence (BE) implications.

Continuous periodic function

$$\rho_2 \left(\sum_{k=1}^{25} \frac{(-1)^k \sin(-\phi \pi k(t-\tau))}{k} + \rho_1 \right)^{\rho_3} + s$$

Estimating a slat wave with sum of sines (25)

 $\rho 1$ = Length/amplitude of phase I $\rho 2$ = Length/amplitude of phase II relative to phase I

 ρ 3 = Length/amplitude of phase III $s = K_{ae}$ range

 τ = phase shift

 ϕ = half the fundamental frequency (approx. once every 120 min)

Figure 1: Above table shows the simulated ranges of phase-dependent emptying half-lives for 50mL and 200mL volumes. Chart below shows emptying half-times $t_{1/2}$ (green dots) compared to measured [1] times in different phases and volumes.

Piecewise continuous lag time function

$$a - \frac{b}{c + d\left(exp\left[-e(t_0 \bmod\left[2/\phi\right]) + f\right]\right)}$$

Sigmoidal decay model a = initial lag (max Phase I lag),equivalent of maximum asymptote b,c = minimum asymptote and shape

d = decay rate

e = adjusts location of maximum decay (relative to max/min asymptote)

f = Amplitudinal difference between min/max lag times

Figure 1: Gastric emptying patterns for 50mL and 200mL volumes based on measured subject data [1].

Methods

constructed to account for cyclical relative to the randomly-chosen dosing respectively. times. The population reference was calculated using 10000 simulations. Samples of 6, 12, or 24 virtual subjects were randomly chosen and evaluated as pilot or BE trials.

Results

A physiologically-based model was Approximately a quarter of the subjects in the volumetric emptying study displayed non-first gastric emptying rates. The time- order emptying and 20% of the simulations dependence was represented by a showed similar kinetics. For BE studies, periodic, piecewise-continuous approximately 14-58% of the FDA-required function that increased from phase I mean C_{max} 90% confidence intervals of the through III. Assuming fasted state and samples exceeded the reference simulation linear metabolism, simulated emptying 80-125 range for a 7-min. half-life drug in a small rates corresponded to in vivo studies 50mL volume; for a 200mL volume, 32-60% [3]. The range of volumetric emptying failed. For long 4-hr. elimination half-lives in was also evaluated against results 50mL and 200mL volumes, the sample from in vivo studies [2]. The variations confidence intervals constituted 8-17% and in C_{max} and T_{max} were calculated 9-20% of the 80-125 population ranges,

function of dosing time t_0 .

pyloroplasty (red dots) [4]. The yellow shaded region represents deviation Figure 7: Dosing-time to dependence on gastric emptying for 50mL (left) and 200mL (right) volumes. The smaller volume shows significantly longer delay that is only seen

Figure 2: Above, the predicted gastric emptying results for a 35minute range (shaded region) with superimposed volumetric emptying data from subjects measured by MRI [2]. Below, emptying patterns show both first-order (left, ~75%) and non-first order (right, ~25%) emptying patterns which correspond to the distribution of simulated emptying patterns.

Figure 3: Accordance of measured [3] versus simulated gastric emptying transit time ranges. The black diamonds represent the confidence intervals of the means which overlap, and the difference in the means is statistically insignificant (Mann-Whitney p = 0.46)

Figure 4: Emptying of 400mL labeled glucose solution for a subject with from the predicted (blue line) emptying pattern due presumably to the glucose-induced fed state, after which the fasted-state prediction agrees with in the initial phase of the larger volume. the measurements.

Fluorouracil Oral Data)mL Vol. & 7–min. Elin Plasma Compartment

Figure 5: Plasma level variations of oral fluorouracil (dose- and weight-adjusted) [5]. Left, the shaded regions represent the envelope of plasma level predictions without knowing the dosing time t_0 . Right, plasma level predictions can be reproduced as a

Conclusions

We fit a Fourier series approximation to gastric emptying results and independently validated the function. Significant variation in C_{max} is predicted due to gastric emptying alone for BCS Class I drugs. Considerably more variation in plasma levels is predicted with a 50mL volume of fluid. The volume-dependence of gastric emptying and the resultant C_{max} variation suggest further investigations regarding patient compliance are needed.

				1				
lalt–lite (min)	6 samples	12 samples	24 samples		Halt-life	6 samples	12 samples	24 samples
(((((((((((((((((((((((((((((((((((((((100	100	70		7	60	18	10
1	100.	76	70.	-	1/	52	40.	10.
20	66	18	24.	-	30	10	0	0.
50 60	22	10.	0.	-	<u> </u>	10.	0.	0.
240	22.	0.	0.	-	240	2.	0.	0.
240	0.	0.	0.		240	0.	0.	0.
200n	nL Vol.				200n	nL Vol.		
Perc	ent Faile	d RE Sti	udies		Perc	ent Faile	d RE Sti	ıdies
(mod	tion C			(moon C = 000% CI)				
(met		x 9070 C	L)	1	(IIICa	m C _{max} 9	070 CI)	
Half–life	6		24		Half-life	6	12	24
(min) 7	samples	samples	samples		(min)	samples	samples	samples
1	100.	100.	100.	-	1	60.	56.	28.
14	98.	98.	60.		14	54.	24.	Z.
30	66.	14.	0.	-	30	12.	0.	0.
~~		1 11	10		60	0.	0.	0.
30 240 50mL \ Percen	16. 2. Vol. t of BE 8	0. 0. 30–125	0.		240 50mL Percer	2. Vol. nt of BE	0. 80–125	0.
⁶⁰ 240 50mL Percen Interva	16. 2. Vol. t of BE 8 al (media	0. 0. 80–125 an C _{max} 9	0. 0% CI)		240 50mL Percer Interv	2. Vol. nt of BE val (mear	0. 80–125 n C _{max} 90	0. % CI)
60 240 50mL V Percen Interva Half–life	16. 2. Vol. t of BE 8 al (media 6	0. 0. 80–125 an C _{max} 9 12	0. 0% CI) 24		240 50mL Percer Interv Half-life	2. Vol. nt of BE val (mean	0. 80–125 n C _{max} 90 12	0. % CI) 24
60 240 50mL V Percen Interva Half–life (min)	16. 2. Vol. t of BE 8 al (media 6 samples	0. 0. 80–125 an C _{max} 9 12 samples	0. 0% CI) 24 samples		240 50mL Percer Interv Half-life (min)	2. Vol. nt of BE val (mean 6 samples	0. 80–125 n C _{max} 90 12 samples	0. % CI) 24 samples
60 240 50mL V Percen Interva Half–life (min) 7	16. 2. Vol. t of BE 8 al (media 6 samples 216.071	0. 0. 30–125 an C_{max}9 12 samples 146.938	0. 0% CI) 24 samples 89.5305		240 50mL Percer Interv Half–life (min) 7	2. Vol. nt of BE val (mean 6 samples 139.514	0. 80–125 h C _{max} 90 12 samples 84.4214	0. % CI) 24 samples 56.251
60 240 50mL Percen Interva Half–life (min) 7 14	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095	0. 0. 30–125 in C_{max}9 12 samples 146.938 93.7344	0. 0% CI) 24 samples 89.5305 61.843		240 50mL Percer Interv Half–life (min) 7 14	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478	0. 80–125 h C _{max} 90 12 samples 84.4214 55.6091	0. % CI) 24 samples 56.251 40.444
60 240 50mL V Percen Interva Half–life (min) 7 14 30	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475	0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729	0. 0% CI) 24 samples 89.5305 61.843 36.7597		240 50mL Percer Interv Half–life (min) 7 14 30	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721	0. 80–125 C max90 12 samples 84.4214 55.6091 36.8311	0. % CI) 24 samples 56.251 40.444 25.3804
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959	0. 0. 30–125 in C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272	0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504		240 50mL Percent Interv Half–life (min) 7 14 30 60	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668	0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743	0. 0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091		240 50mL Percent Interv Half–life (min) 7 14 30 60 240	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382	0. 80–125 C max90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746
60 240 50mL Percen Interva Half–life (min) 7 14 30 60 240 240	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668	0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743	0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091		240 50mL Percer Interv Half–life (min) 7 14 30 60 240	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 200mL Percen	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8	0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743	0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 200mL Percen Interva	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media	0. 0. 30–125 an C _{max} 9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 30–125 an C _{max} 9	0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240 240	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE val (mean	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 cmax90	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI)
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 240 200mL Percen Interva Half–life	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6	0. 0. 0. 30–125 an C _{max} 9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 30–125 an C _{max} 9 30–125 an C _{max} 9 30–125	0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 0% CI) 24		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240 240 200ml Percer Interv	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE val (mean 6	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 Cmax90 12	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 240 200mL Percen Interva Half–life (min)	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6 samples	0. 0. 0. 30–125 an C _{max} 9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 360–125 an C _{max} 9 12 samples	0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 0% CI) 24 samples		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240 200ml Percer Interv Half–life (min)	2. Vol. nt of BE val (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE val (mean 6 samples	0. 80-125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80-125 Cmax90 12 samples	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24 samples
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 240 200mL Percen Interva Half–life (min) 7	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6 samples 224.242	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 0% CI) 24 samples 137.419		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240 200ml Percer Interv Half–life (min) 7	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE al (mean 6 samples 148.431	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 Cmax90 12 samples 98.2169	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24 samples 68.7774
60 240 50mL Percen Interva Half–life (min) 7 14 30 60 240 240 200mL Percen Interva Half–life (min) 7 14	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6 samples 224.242 159.231	0. 0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 36–125 an C_{max}9 12 samples 180.532 113.038	0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 23.7504 7.89091 0% CI) 24 samples 137.419 82.1787		240 50mL Percer Interv Half–life (min) 7 14 30 60 240 240 200ml Percer Interv Half–life (min) 7 14	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE al (mean 6 samples 148.431 104.313	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 Cmax90 12 samples 98.2169 63.5664	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24 samples 68.7774 45.2496
60 240 50mL V Percen Interva Half–life (min) 7 14 30 60 240 240 240 200mL Percen Interva Half–life (min) 7 14 30	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6 samples 224.242 159.231 91.9919	0. 0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 34.0272 17.5743 360–125 an C_{max}9 12 samples 180.532 113.038 66.7816	0. 0. 0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 0% CI) 24 samples 137.419 82.1787 44.436		240 50mL Percen Interv Half–life (min) 7 14 30 60 240 240 200ml Percen Interv Half–life (min) 7 14 30 200ml 1 2 2 1 1 1 1 1 1 1 1	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE al (mean 6 samples 148.431 104.313 58.9055	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 Cmax90 12 samples 98.2169 63.5664 38.7715	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24 samples 68.7774 45.2496 25.4509
60 240 50mL Percen Interva Half–life (min) 7 14 30 60 240 240 200mL Percen Interva Half–life (min) 7 14 30 60 240 240 240 240 240 240 240 24	16. 2. Vol. t of BE 8 al (media 6 samples 216.071 145.095 89.2475 58.1959 25.5668 Vol. t of BE 8 al (media 6 samples 224.242 159.231 91.9919 53.512	0. 0. 0. 30–125 an C_{max}9 12 samples 146.938 93.7344 59.3729 34.0272 17.5743 34.0272 17.5743 360–125 an C_{max}9 12 samples 180.532 113.038 66.7816 33.4287	0% CI) 24 samples 89.5305 61.843 36.7597 23.7504 7.89091 0% CI) 24 samples 137.419 82.1787 44.436 22.6752		240 50mL Percent Interv Half–life (min) 7 14 30 60 240 200ml Percent Interv Half–life (min) 7 14 30 60 240 200ml 1 200ml 1 1 1 1 1 1 1 1	2. Vol. nt of BE al (mean 6 samples 139.514 89.1478 55.8721 35.9503 16.2382 L Vol. nt of BE al (mean 6 samples 148.431 104.313 58.9055 33.359	0. 80–125 Cmax90 12 samples 84.4214 55.6091 36.8311 23.2347 11.6667 80–125 Cmax90 12 samples 98.2169 63.5664 38.7715 20.9054	0. % CI) 24 samples 56.251 40.444 25.3804 16.3633 7.51746 % CI) 24 samples 68.7774 45.2496 25.4509 13.8327

Table 1: Sum percent of 80-125 range covered by mean/median 90% confidence interval, the resultant variation in C_{max} due to gastric emptying.

References

. Oberle et al., Gastroenterology, 99(5): 1275-1282 (1990) 2. Marciani *et al.*, Molecular Pharmaceutics, Submitted Feb 2014. 3. Davis *et al.*, Gut 27:886-892 (1986). 4. Elashoff *et al.*, Gastroenterology. 1982 Dec;83(6): 1306-12 (1982). 5. Phillips et al., J Pharm Sci. ,69(12):1428-31 (1980).

Acknowledgements

FDA Contract HHSF223201310144C

COLLEGE UF PHARMACY UNIVERSITY OF MICHIGAN

