Poster # W2009

Evaluation of Level A In Vitro-In Vivo Correlations (IVIVC) for Nicotine and Fentanyl Transdermal Delivery Systems with Transient Heat Exposure by Using **Multiple Approaches**

Hazem E. Hassan¹, Audra L. Stinchcomb¹ ¹ Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD ² Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, CDER, U.S. FDA, Silver Spring, MD

PURPOSE

An in vitro model that exhibits IVIVC is a powerful tool in biopharmaceutical drug development because it can efficiently predict drug product performance in though the concept of IVIVC has been utilized most often for oral vivo. Even dosage forms, demonstrations of IVIVC with in vitro models used for other are emerging. The present investigation used multiple approaches to develop a Level A IVIVC for Transdermal Delivery Systems (TDS). Additionally, the effect of transient heat exposure on the rate and extent of TDS drug delivery was concurrently evaluated. Two model drug molecules, nicotine and fentanyl, with different physicochemical characteristics (e.g. log P) were evaluated in the current study.

METHODS

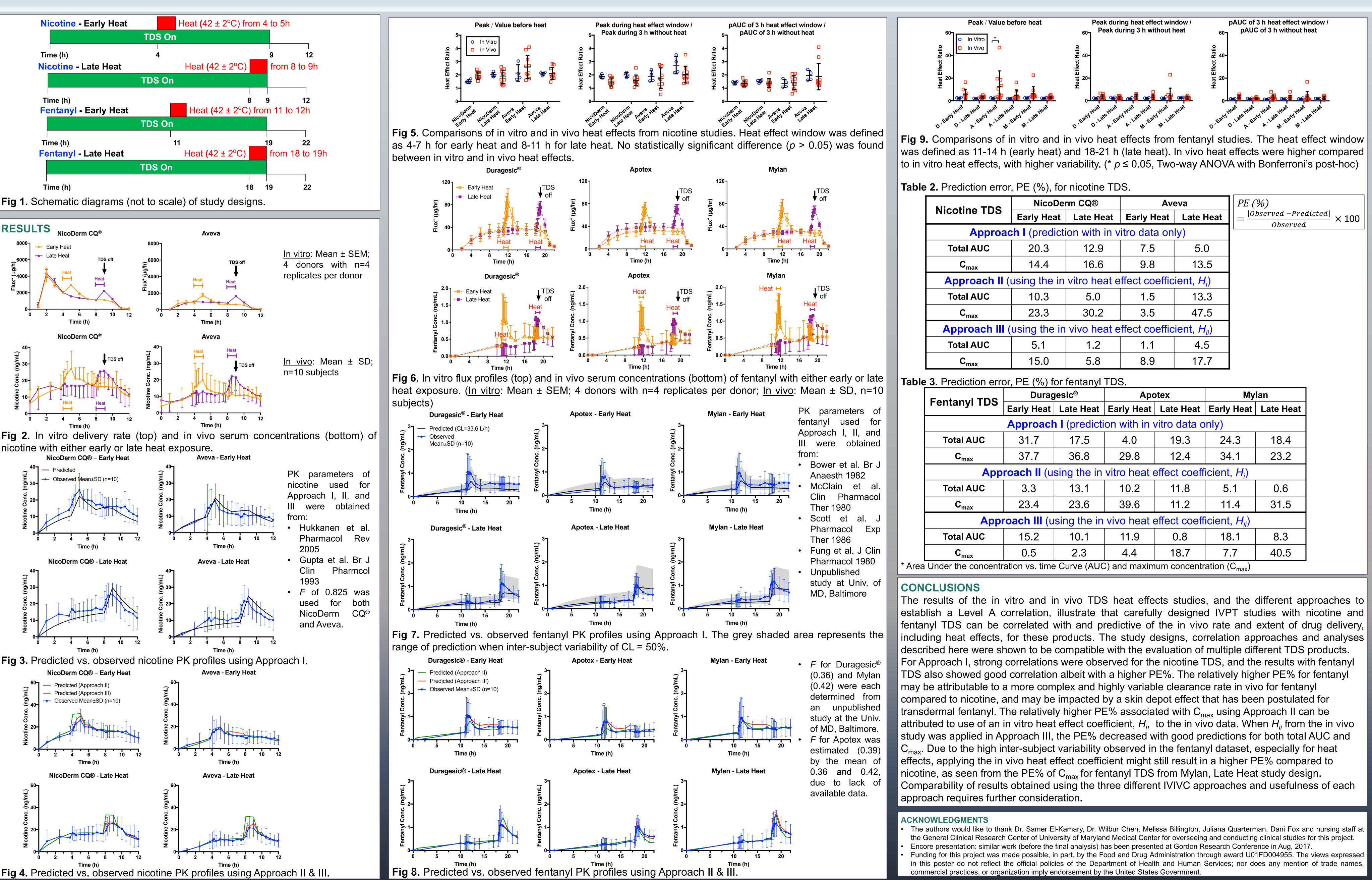
In Vitro and In Vivo Studies

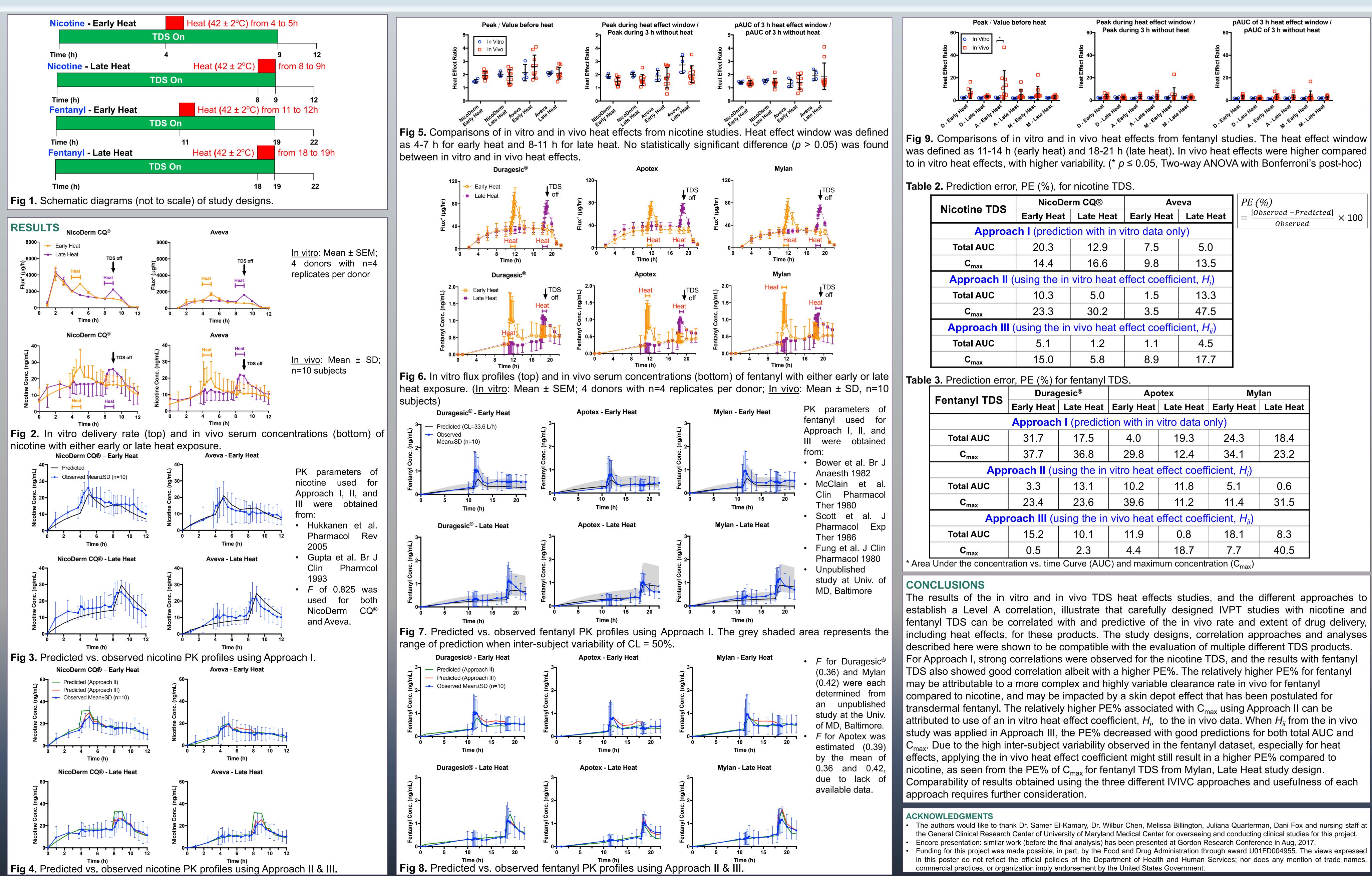
In vitro permeation tests (IVPT) using dermatomed ex vivo human skin and in vivo pharmacokinetic (PK) studies in healthy subjects were performed under harmonized study designs, including harmonized conditions of transient exposure to elevated temperatures for two nicotine TDS, 14 mg/24h (NicoDerm CQ[®] and Aveva) and three fentanyl TDS, 25 µg/h (Duragesic[®], Apotex and Mylan). The TDS were exposed to one hour (h) of transient heat (target skin temperature of 42 ± 2°C) at either 4 h (early) or 8 h (late) for nicotine TDS and at 11 h (early) or 18 h (late) for fentanyl TDS. Temperature was monitored using an infrared thermometer in vitro and a temperature probe in vivo.

<u>Approach</u> I: IVPT data, PK-based mathematical equations and in vitro heat effect coefficient (H_i) were used to predict in vivo concentrations. • Eq. 1 Prediction while TDS was worn:

$$C_s = \frac{F \cdot R_{in} \cdot H_i}{CL} \cdot (1 - e^{-kt})$$

• Eq. 2 Prediction after TDS removal:


$$C_s = C_0 \cdot e^{-\left(\frac{\ln 2}{t_{1/2}, TDS}\right)}$$


: Predicted in vivo serum concentration $AUC_{0-\infty,TDS} \times Dose_{IV}$ -: Absolute bioavailability for TDS $AUC_{0-\infty}$ IV × Dose_{TDS} Rate of input (mean delivery rate during steady-state in IVPT experiments) H_i: In vitro heat effect coefficient (composite heat effect during and after heat exposure); ratio of flux values with heat and without heat CL: Total body clearance obtained from literature/product package information k: Elimination rate constant obtained from literature/product package information Time after administration of TDS for Eq.1 and time after removal of TDS for Eq. 2 : Predicted Initial concentration after TDS removal , TDS: half-life after TDS removal **Approach II and III:**

- Reconstruct baseline (32°C) profile by combining the non-heat (32°C) portion of each profile from the early and late heat study designs (Fig. 1) Deconvolute the in vivo baseline conc. vs time profile using Phoenix[®]
- Construct an IVIVC model by plotting the fraction permeated in vitro vs. the fraction absorbed in vivo
- Predict the in vivo fraction absorbed using the IVIVC model and IVPT data
- Convolute the predicted in vivo fraction absorbed data
- Apply the in vitro heat effect coefficient H_i (**Approach II**) or the in vivo heat effect coefficient (H_{ii}) (**Approach III**) to the predicted in vivo profile

Table 1. Characteristics of nicotin				ne and fen	itanyl TDS	used in the s	ed in the study.		
			0:						

	API Amt (mg)	Size (cm²)	Adhesive	Other Inactive Ingredients			
Nicotine TDS (14 mg/24 h)							
NicoDerm	Unknown	15.75	PIB	Ethylene vinyl acetate-copolymer,			
CQ®				polyester backings			
Aveva	Unknown	20.12	Acrylate/	Polyester			
			Silicone	T Ofyester			
Fentanyl TDS (25 µg/h)							
	4.20	10.50	Acrylate	Polyester/			
Duragesic [®]				ethyl vinyl acetate backing film,			
				copovidone			
	2.76	10.70	PIB	Isopropyl myristate, octyldodecanol,			
Apotex				polybutene, polyethylene/ aluminum/			
				polyester film backing			
Mylan	2.55	6.25	Silicone	Dimethicone NF, polyolefin film backing			

Soo Hyeon Shin¹, Mingming Yu¹, Sherin Thomas¹, Dana C. Hammell¹, Priyanka Ghosh², Sam G. Raney²,

回然就回 **AAPS ANNUAL MEETING & EXPOSITION**

CONTACT INFORMATION: shin@umaryland.edu

Nicotine TDS	NicoDe	r m CQ ®	Aveva					
Nicoline 1D5	Early Heat	Late Heat	Early Heat	Late Heat				
Approach I (prediction with in vitro data only)								
Total AUC	20.3	12.9	7.5	5.0				
C _{max}	14.4	16.6	9.8	13.5				
Approach II (using the in vitro heat effect coefficient, H_i)								
Total AUC	10.3	5.0	1.5	13.3				
C _{max}	23.3	30.2	3.5	47.5				
Approach III (using the in vivo heat effect coefficient, H_{ii})								
Total AUC	5.1	1.2	1.1	4.5				
C _{max}	15.0	5.8	8.9	17.7				

ontonyl TDS	Duragesic®		Apotex		Mylan			
entanyl TDS	Early Heat	Late Heat	Early Heat	Late Heat	Early Heat	Late Heat		
Approach I (prediction with in vitro data only)								
Total AUC	31.7	17.5	4.0	19.3	24.3	18.4		
C _{max}	37.7	36.8	29.8	12.4	34.1	23.2		
Approach II (using the in vitro heat effect coefficient, H_i)								
Total AUC	3.3	13.1	10.2	11.8	5.1	0.6		
C _{max}	23.4	23.6	39.6	11.2	11.4	31.5		
Approach III (using the in vivo heat effect coefficient, H _{ii})								
Total AUC	15.2	10.1	11.9	0.8	18.1	8.3		
C _{max}	0.5	2.3	4.4	18.7	7.7	40.5		
nder the concentration vs. time Curve (AUC) and maximum concentration (C _{max})								