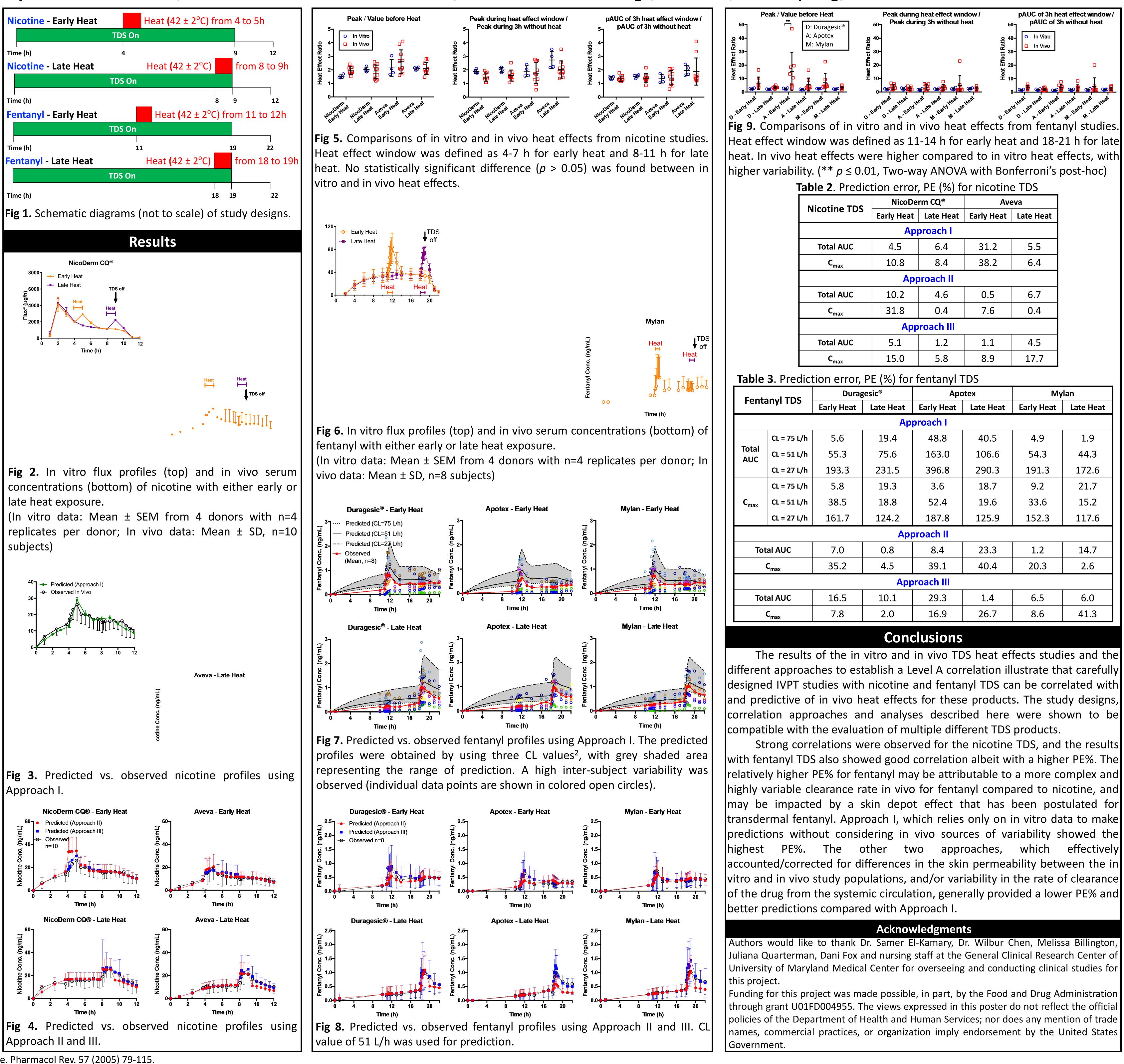
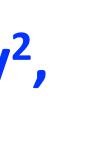


JNIVERSITY


MARYLAND

School of Pharmacy ¹ Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD ² Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, U.S. FDA, Silver Spring, MD


		Р	urpose					
		that ex	hibits IV	IVC is a powerful tool ir				
-	maceutical drug development because it can efficiently predict oduct performance <i>in vivo</i> . Even though the concept of IVIVC							
				age forms, demonstrations o				
				r dosage forms are emerging approaches to develop a Leve				
•	•		•	(TDS). Additionally, the effect				
				nd extent of TDS drug delivery				
	•			drug molecules, nicotine and				
-	ated in the			al characteristics (e.g. log P)				
			lethods					
n Vitro and	d In Vivo St							
•			•	rmatomed ex vivo human skir				
	•	·	. ,	ies in healthy subjects were esigns, including harmonized				
			-	evated temperatures for two				
		•	-	and Aveva) and three fentany				
		-		lylan). The TDS were exposed				
			· ·	skin temperature of 42 ± 2° C				
		•		ine TDS and at 11 h (early) or ure was monitored using ar				
· · · · ·		-	•	perature probe in vivo.				
VIVC			•	-				
	: IVPT data	a, PK-base	d mather	natical equations and in vitro				
		•		redict in vivo concentrations.				
• Eq. 1 I	Prediction v			1:				
	$C_s = \frac{\pi_{in}}{C}$	$\frac{\cdot H_i}{2L} \cdot (1 -$	$-e^{-kt}$)					
• Eq. 2 I	Prediction a	after TDS i						
	$C_s = C_0$	$\cdot e^{-kt}$						
C _s : Predicted				o in N/DT ovnoriments)				
R _{in} : Rate of i	nput (mean	flux during s	steady-state	e in IVPT experiments) heat effect during and after heat				
Rate of i <i>H_i</i> : In vitro exposure); r	nput (mean t heat effect o atio of flux va	flux during s coefficient (alue and R _{in}	steady-state composite until <i>H_i</i> be	heat effect during and after heat comes 1 or less				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Populatio	nput (mean t heat effect o atio of flux va	flux during s coefficient (alue and R _{in} y clearance	steady-state composite until <i>H</i> _i be obtained fr	heat effect during and after heat comes 1 or less om literature ^{1,2}				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Populatie k: Eliminatic t: Time after	nput (mean theat effect of atio of flux va on total body on constant o	flux during s coefficient (alue and R _{in} clearance btained fro	steady-state composite until <i>H</i> _i be obtained fr m literature	heat effect during and after heat comes 1 or less om literature ^{1,2}				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Populatie k: Eliminatic t: Time after 2	nput (mean theat effect of atio of flux va on total body on constant o radministrat	flux during s coefficient (alue and <i>R_{in}</i> / clearance btained fro ion of TDS f	steady-state composite until <i>H</i> _i be obtained fr m literature or Eq.1 and	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3}				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Populati k: Eliminatic t: Time after 2 C ₀ : Initial co	nput (mean theat effect of atio of flux va on total body on constant of radministrat	flux during s coefficient (alue and <i>R_{in}</i> / clearance btained fro ion of TDS f	steady-state composite until <i>H</i> _i be obtained fr m literature or Eq.1 and	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3}				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Populati k: Eliminatio t: Time after 2 C ₀ : Initial co	nput (mean theat effect of atio of flux va on total body on constant of r administrat ncentration a	flux during s coefficient (alue and <i>R_{in}</i> / clearance btained fro ion of TDS f	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3}				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconst heat po	nput (mean theat effect of atio of flux values on total body on constant of r administrat ncentration a I and III: ruct of bac rtion of pro	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1)				
R_{in} : Rate of i H_i : In vitroexposure); r $CL:$ Populati k : Eliminatic t : Time after2 C_0 : Initial co Approach I 1. Reconstheat po2. Deconverto	nput (mean theat effect of atio of flux values on total body on constant of r administrat ncentration a <u>I and III:</u> ruct of bal rtion of pro- olute in vi	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc ne PK da	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} d time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelsor				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconst heat po 2. Deconver method	nput (mean theat effect of atio of flux values on total body on constant of r administrat ncentration a I and III: ruct of bal rtion of pro olute in vi and PK pa	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters o	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc ne PK da obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) Ita using the Wagner-Nelsor from literature				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconst heat po 2. Deconver method 3. Construe	nput (mean theat effect of atio of flux values on total body on constant of r administrat ncentration a I and III: ruct of bal rtion of pro olute in vi and PK pa	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc ne PK da obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} d time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelsor				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconstruction Approach I 1. Reconstruction Reconversion $Reconversion Reconversion ReconversionReconversion Reconversion Reconversion Reconversion ReconversionReconversion Reconversion ReconversionReconversion ReconversionReconversionReconversion ReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversionReconversio$	nput (mean in the at effect of a tio of flux values on total body on constant of a dministrate a dministrate for a dmini	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p in vivo	steady-state composite until <i>H</i> _i be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) Ita using the Wagner-Nelsor from literature				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconstruction Approach I 1. Reconvert heat po 2. Deconvert method 3. Construction 4. Predict data	nput (mean in heat effect of atio of flux va on total body on constant of r administrat ncentration a rtion of pro- olute in vi l and PK pa ict IVIVC m absorbed in vivo fra	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p in vivo ction abso	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (Fig. 1) Ita using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconstruction Approach I 1. Reconvertion Approach I Approach I Approa	nput (mean in the the at effect of atio of flux values on total body on constant of administrate administrate in the predict IVIVC means or bed in vivo fraction of products of the preduct of the preduc	flux during s coefficient (alue and R_{in} / clearance btained fro btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p in vivo ction abso dicted in v	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained obtained obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} d time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelsor from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data				
R_{in} : Rate of i H_i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C_0 : Initial co Approach I 1. Reconstruction Approach I 1. Reconvert heat po 2. Deconvert method 3. Construction 4. Predict data 5. Convolut 5. Apply H	nput (mean in the the at effect of atio of flux values on total body on constant of administrate administrate in the predict IVIVC means or bed in vivo fraction of products of the preduct of the preduc	flux during s coefficient (alue and R_{in} / clearance btained fro btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p in vivo ction abso dicted in v hch II) or	steady-state composite until <i>H</i> _i be obtained fr m literature or Eq.1 and moval thout hea two stuc ne PK da obtained obtained obtained obtained obtained in vivo	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (At) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii})				
 <i>R_{in}</i>: Rate of i <i>H_i</i>: In vitro exposure); r <i>CL:</i> Population <i>k</i>: Elimination <i>t</i>: Time after <i>C₀</i>: Initial construction Approach I Reconstruction Deconversion Construction Construction Prediction Apply <i>I</i> (Approach 	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a <u>I and III:</u> ruct of ba rtion of pro olute in vi l and PK pa of IVIVC m absorbed in vivo fra ute the preo H _i (Approa	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of odel by p in vivo ction abso dicted in v he predict	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained obtained obtained obtained obtained obtained obtained obtained obtained obtained	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) profile				
 <i>R_{in}</i>: Rate of i <i>H_i</i>: In vitro exposure); r <i>CL:</i> Population <i>k</i>: Elimination <i>t</i>: Time after <i>C₀</i>: Initial construction Approach I Reconstruction Deconversion Construction Construction Prediction Apply <i>I</i> (Approach 	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a <u>I and III:</u> ruct of ba rtion of pro olute in vi l and PK pa of IVIVC m absorbed in vivo fra ute the preo H _i (Approa	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained fr orbed usi	heat effect during and after heat comes 1 or less om literature ^{1,2} $e^{2,3}$ d time after removal of TDS for Eq. (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (H_{ij} profile				
 <i>R_{in}</i>: Rate of i <i>H_i</i>: In vitro exposure); r <i>CL:</i> Population <i>k</i>: Elimination <i>t</i>: Time after <i>C₀</i>: Initial construction Approach I Reconstruction Deconversion Construction Construction Prediction Apply <i>I</i> (Approach 	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a <u>I and III:</u> ruct of ba rtion of pro olute in vi l and PK pa of IVIVC m absorbed in vivo fra absorbed in vivo fra	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict cs of nicot	steady-state composite until <i>H</i> _i be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained fr orbed usi	heat effect during and after heat comes 1 or less om literature ^{1,2} $e^{2,3}$ d time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelsor from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (H_{ii} profile entanyl TDS used in the study Other Inactive Ingredients				
 <i>R_{in}</i>: Rate of i <i>H_i</i>: In vitro exposure); r <i>CL:</i> Population <i>k</i>: Elimination <i>t</i>: Time after <i>C₀</i>: Initial construction Approach I Reconstruction Deconversion Construction Construction Construction Apply <i>I</i> (Approach I) 	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a I and III: ruct of ba rtion of pro olute in vi l and PK pa oct IVIVC m absorbed in vivo fra absorbed in vivo fra ate the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict cs of nicot	steady-state composite until <i>H_i</i> be obtained fr m literature or Eq.1 and moval thout hea two stuc ne PK da obtained obtained obtained obtained fr orbed usi rivo fraction orbed usi	heat effect during and after heat comes 1 or less om literature ^{1,2} $e^{2,3}$ d time after removal of TDS for Eq. at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelsor from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (H_{ii} profile entanyl TDS used in the study Other Inactive Ingredients				
 <i>R_{in}</i>: Rate of i <i>H_i</i>: In vitro exposure); r <i>CL:</i> Population <i>k</i>: Elimination <i>t</i>: Time after <i>C</i>₀: Initial construction Approach I Reconstruction Deconversion Construction Construction Construction Prediction Apply <i>I</i> (Approaction Apply <i>I</i> (Approaction 	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a <u>I and III:</u> ruct of ba rtion of pro olute in vi l and PK pa olute in vi l and PK pa of IVIVC m absorbed in vivo fra absorbed in vivo fra ach III) to th naracteristic	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict cs of nicot	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc ne PK da obtained obtained obtained obtained fr orbed usi rivo fraction orbed usi ine and fe Mesive <u>TDS (14 mg</u> PIB	heat effect during and after heat comes 1 or less om literature ^{1,2} $e^{2,3}$ I time after removal of TDS for Eq. (Fig. 1) ta using the Wagner-Nelsor from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (H_{ii}) profile entanyl TDS used in the study Other Inactive Ingredients (24 h)				
R _{in} : Rate of i H _i : In vitro exposure); r CL : Population k : Elimination t : Time after 2 C ₀ : Initial co Approach I 1 . Reconstruction Approach I 1 . Reconvertion 2 . Deconvertion 3 . Construction 4 . Prediction 5 . Convolution 5 . Apply <i>H</i> 6 . Apply <i>H</i> 6 . Apply <i>H</i> 7able 1 . Ch NicoDerm	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a I and III: ruct of ba rtion of pro olute in vi l and PK pa oct IVIVC m absorbed in vivo fra absorbed in vivo fra ate the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict cs of nicot	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuce ne PK da obtained obtained obtained fr orbed usi crbed usi fr orbed usi in vivo ed in vivo ed in vivo ed in vivo	heat effect during and after heat comes 1 or less om literature ^{1,2} $e^{2,3}$ I time after removal of TDS for Eq. (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (H_{ii}) on absorbed data heat effect coefficient (H_{ii}) on absorbed data heat effect coefficient (H_{ii}) of the INDS used in the study Other Inactive Ingredients (24 h) Ethylene vinyl acetate-copolymer,				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconver- method 3. Constru- fraction 4. Predict data 5. Convolu 5. Apply H (Approa Table 1. Ch	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a I and III: ruct of ba rtion of pro- olute in vi l and PK pa oct IVIVC m absorbed in vivo fra absorbed in vivo fra ate the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict Size (cm ²) <u>Nicotine</u> 15.75 20.12	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuc ne PK da obtained obtained obtained obtained fr orbed usi rivo fraction orbed usi ine and fe Mesive <u>TDS (14 mg</u> PIB	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) or absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients /24 h) Ethylene vinyl acetate-copolymer, polyester backings Polyester				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconver- method 3. Constru- fraction 4. Predict data 5. Convolu 5. Apply H (Approa Table 1. Ch NicoDerm CQ [®]	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a rtion of pro- olute in vi and PK pa oct IVIVC m absorbed in vivo fra ute the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v ne predict cs of nicot size (cm ²) <u>Nicotine</u> 15.75 20.12 <u>Fentan</u>	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea n two stuce ne PK da obtained obtained obtained obtained fr orbed usi rivo fractice in vivo ed in vivo ed in vivo ine and fe <u>Adhesive</u> <u>PIB</u> Acrylate/ <u>Silicone</u>	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} It ime after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) on absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients (24 h) Ethylene vinyl acetate-copolymer, polyester backings Polyester g/h) Polyester/				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconver- method 3. Constru- fraction 4. Predict data 5. Convolu 6. Apply H (Approa Table 1. Ch	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a I and III: ruct of ba rtion of pro- olute in vi l and PK pa oct IVIVC m absorbed in vivo fra absorbed in vivo fra ate the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} / clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v he predict Size (cm ²) <u>Nicotine</u> 15.75 20.12	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea ne PK da obtained obtained obtained obtained obtained fr orbed usi rivo fraction in vivo ed in vivo ed in vivo ed in vivo ed in vivo	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) or absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients /24 h) Ethylene vinyl acetate-copolymer, polyester backings Polyester				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconver- method 3. Constru- fraction 4. Predict data 5. Convolu 6. Apply H (Approa Table 1. Ch NicoDerm CQ [®]	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a rtion of pro- olute in vi and PK pa oct IVIVC m absorbed in vivo fra ute the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v ne predict cs of nicot size (cm ²) <u>Nicotine</u> 15.75 20.12 <u>Fentan</u>	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea n two stuce ne PK da obtained obtained obtained obtained fr orbed usi rivo fractice in vivo ed in vivo ed in vivo ine and fe <u>Adhesive</u> <u>PIB</u> Acrylate/ <u>Silicone</u>	heat effect during and after heat comes 1 or less om literature ^{1,2} e ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) that using the Wagner-Nelson from literature action permeated in vitro vs ing the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) on absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients /24 h) Ethylene vinyl acetate-copolymer, polyester g/h) Polyester ethyl vinyl acetate backing film, copovidone Isopropoyl myristate,				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconver- method 3. Constru- fraction 4. Predict data 5. Convolu 6. Apply H (Approa Table 1. Ch NicoDerm CQ [®]	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a rtion of pro- olute in vi and PK pa oct IVIVC m absorbed in vivo fra ute the preo H _i (Approa ach III) to the naracteristic Drug Load (mg)	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters of nodel by p in vivo ction abso dicted in v ne predict cs of nicot size (cm ²) <u>Nicotine</u> 15.75 20.12 <u>Fentan</u>	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea n two stuce ne PK da obtained obtained obtained obtained fr orbed usi rivo fractice in vivo ed in vivo ed in vivo ine and fe <u>Adhesive</u> <u>PIB</u> Acrylate/ <u>Silicone</u>	heat effect during and after heat comes 1 or less om literature ^{1,2} a ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) on absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients /24 h) Ethylene vinyl acetate-copolymer, polyester g/h) Polyester ethyl vinyl acetate backing film, copovidone				
R _{in} : Rate of i H _i : In vitro exposure); r CL: Population k: Elimination t: Time after 2 C ₀ : Initial co Approach I 1. Reconstru- heat po 2. Deconve- method 3. Constru- fraction 4. Predict- data 5. Convolu 6. Apply H (Approa Table 1. Ch NicoDerm CQ [®] Aveva	nput (mean i heat effect o atio of flux va on total body on constant o r administrat ncentration a I and III: ruct of ba rtion of pro- olute in vi and PK pa ot IVIVC m absorbed in vivo fra ate the preo H _i (Approa ach III) to the naracteristic Drug Load (mg) Unknown	flux during s coefficient (alue and R_{in} clearance btained fro ion of TDS f after TDS re seline (wi ofiles from vo baselin rameters odel by p in vivo ction abso dicted in v of ne predict Size (cm ²) <u>Nicotine</u> 15.75 20.12 <u>Fentan</u> 10.50	steady-state composite until <i>H_i</i> be obtained fr m literature for Eq.1 and moval thout hea two stuce ne PK da obtained obtained obtained obtained fr orbed usi ine and fe in vivo ed in vivo ed in vivo ine and fe <u>Adhesive</u> <u>TDS (14 mg</u> PIB Acrylate/ <u>Silicone</u> yI TDS (25 µ Acrylate	heat effect during and after heat comes 1 or less om literature ^{1,2} a ^{2,3} I time after removal of TDS for Eq. (at) profile by combining non- ly designs (Fig. 1) ta using the Wagner-Nelson from literature action permeated in vitro vs ng the IVVIC model and IVPT on absorbed data heat effect coefficient (<i>H</i> _{ii}) or absorbed data heat effect coefficient (<i>H</i> _{ii}) profile entanyl TDS used in the study Other Inactive Ingredients /24 h) Ethylene vinyl acetate-copolymer, polyester g/h) Polyester ethyl vinyl acetate backing film, copovidone Isopropoyl myristate, octyldodecanol, polybutene,				

2. Duragesic[®] Fentanyl Transdermal System [package insert]. Janssen Pharmaceuticals. 2014.

Evaluation of Level A In Vitro In Vivo Correlations (IVIVC) for Nicotine and Fentanyl Transdermal Delivery Systems with Transient Heat Exposure by using Multiple Approaches Soo Hyeon Shin¹, Mingming Yu¹, Sherin Thomas¹, Dana C. Hammell¹, Priyanka Ghosh², Sam G. Raney², **DA U.S. FOOD & DRUG** Hazem E. Hassan¹, Audra L. Stinchcomb¹ ADMINISTRATION

3. SK Gupta, NL Benowitz, P Jacob III, CN Rolf, J Gorsline. Bioavailability and absorption kinetics of nicotine following application of a transdermal system. Br J Clin Pharmacol. 36 (1993) 221-227.

able Z. Prediction error, PE (%) for filcotine TDS										
Nicotine TDS	NicoDe	rm CQ®	Aveva							
Nicotine 1D3	Early Heat	Late Heat	Early Heat	Late Heat						
Approach I										
Total AUC	4.5	6.4	31.2	5.5						
C _{max}	10.8	8.4	38.2	6.4						
Approach II										
Total AUC	10.2	4.6	0.5	6.7						
C _{max}	31.8	0.4	7.6	0.4						
Approach III										
Total AUC	5.1	1.2	1.1	4.5						
C _{max}	15.0	5.8	8.9	17.7						

	Duragesic®		Apotex		Mylan							
	Early Heat	Late Heat	Early Heat	Late Heat	Early Heat	Late Heat						
	Approach I											
'n	5.6	19.4	48.8	40.5	4.9	1.9						
'n	55.3	75.6	163.0	106.6	54.3	44.3						
'n	193.3	231.5	396.8	290.3	191.3	172.6						
'n	5.8	19.3	3.6	18.7	9.2	21.7						
'n	38.5	18.8	52.4	19.6	33.6	15.2						
'n	161.7	124.2	187.8	125.9	152.3	117.6						
	Approach II											
	7.0	0.8	8.4	23.3	1.2	14.7						
	35.2	4.5	39.1	40.4	20.3	2.6						
Approach III												
	16.5	10.1	29.3	1.4	6.5	6.0						
	7.8	2.0	16.9	26.7	8.6	41.3						