Model-based bioequivalence approach: robustness to model misspecification for sparse pharmacokinetic bioequivalence studies

MORGANE PHILIPP,⁰¹ ADRIEN TESSIER,² MARK DONNELLY,³ LUCY FANG,³ KEVIN FENG,³ STELLA GROSSER,⁴ GUOYING SUN,⁴ WANJIE SUN,⁴ FRANCE MENTRÉ,¹ JULIE BERTRAND¹

[@]morgane.philipp@inserm.fr, ¹Université Paris Cité, INSERM, IAME, UMR 1137, 75006 Paris, France, ²Clinical Pharmacometrics, Quantitative Pharmacology, Servier, France, ³Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring MD 20993, USA, ⁴Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring MD 20993, USA

Context

- Pharmacokinetic (PK) bioequivalence (BE) studies compare a reference (R) to a test treatment in terms of exposure, i.e., the area under the curve (AUC) and the (T)maximum plasma concentration (C_{max})
- Regulatory authorities generally recommend estimating AUC and C_{max} on data collected with a two-way, single dose, crossover study using a non-compartmental analysis (NCA) and using a two one-sided test (TOST)¹ on the treatment effect $(\beta^T)^{2,3}$
- Due to challenges using NCA in PK studies with sparse samples, model-based BE (MBBE) has been proposed⁴ however the choice of the structural PK model remains a major challenge⁵

Objectives

• To evaluate the robustness of the MBBE approach to model misspecification in PK BE studies with sparse samples

Simulation study

Settings

- Single-dose, two-way crossover study with N = 20 patients per sequence (within subject) variability = 30%) and n = 6 PK samples per period {t=0.3, 3, 6, 12, 72, 144}
- S = 200 datasets simulated for each scenario

		Simulated model			
		TRANSIT_1-COMPT	TRANSIT_2-COMPT	LAG_0-ORDER_2-COMPT	
fitted with	TRANSIT_1-COMPT				
	TRANSIT_2-COMPT	Under H_0	Under H_0	Under H_0	
	LAG_0-ORDER_2-COMPT	with $eta^T {=} log(1.25)$	with $eta^T = \log(1.25)$	with $\beta^T = \log(1.25)$	
	LAG_1-ORDER_2-COMPT		and under H_1		
	LAG_0-ORDER_2-COMPT LAG_1-ORDER_2-COMPT LAG_0-ORDER_1-COMPT		$eta^T {=} log(0.95)$		
	MS with and w/o simulated model				
	MA with and w/o simulated model				

Evaluation: proportion of model selected, type I error and power

• To investigate the impact of model selection (MS) and model averaging (MA) Methods

MBBE

- Non linear mixed-effects model
 - Fit of concentrations collected in R and T arms together
 - Treatment (β^T), sequence and period effects on all PK parameters μ
 - Population parameters obtained with the SAEM algorithm (Monolix 2020R1)
 - SE obtained by linearisation
 - Likelihood estimated by importance sampling
 - β_{AUC}^T , β_{Cmax}^T and their SE derived from the μ , β^T and their SE analytically or by Monte Carlo calculations (at least 800 samples)
- MB-TOST⁴
 - $H_{0,-\delta}$: { $\beta_{AUC}^T \leq -\delta$ } and $H_{0,\delta}$: { $\beta_{AUC}^T \geq \delta$ } and

$$W_{-\delta} = \frac{\hat{\beta}_{AUC}^T + \delta}{SE(\hat{\beta}_{AUC}^T)} \ge z_{1-\alpha} \text{ and } W_{\delta} = \frac{\hat{\beta}_{AUC}^T - \delta}{SE(\hat{\beta}_{AUC}^T)} \le -z_{1-\alpha}$$

with δ fixed to $\log(1.25)$ by the regulatory guidances^{2,3}, $SE(\beta^T)$ the standard error (SE) of β^T , $z_{1-\alpha}$ the quantile of a normal distribution at level $(1 - \alpha)$ with $\alpha = 5\%$

– BE is concluded if the 90% confidence interval (CI) around the geometric mean ratio ($GMR = \exp(\beta^T)$) is within $[0.8; 1.25]^2$

Results

• MS

LAG 0-ORDER 2-COMP TRANSIT 1-COMPT TRANSIT 2-COMPT TRANSIT 2-COMPT with simulated model w/o simulated model

- with simulated model: right model selected in 28%, 41% and 48% cases under H_0 and 39% under $H_1 \rightarrow$ model not highly identifiable under simulation settings
- w/o simulated model: selection driven by number of COMPT
- MA performs similarly to MS, with one candidate model having w = 1 in 68% and 73% of the cases under H_0 and H_1
- Type I error

Estimate and 95% CI for AUC and C_{max} using M candidate models, MS and MA when the simulated model was included or excluded from the candidate pool

H0 0.125 -	TRANSIT_1-COMPT	TRANSIT_2-COMPT	LAG_0-ORDER_2-COMPT	
\overline{O}				
2%				— TRANSIT_1-COM

Candidate model selected (%) for each scenario when the simulated model was included or excluded from the candidate pool

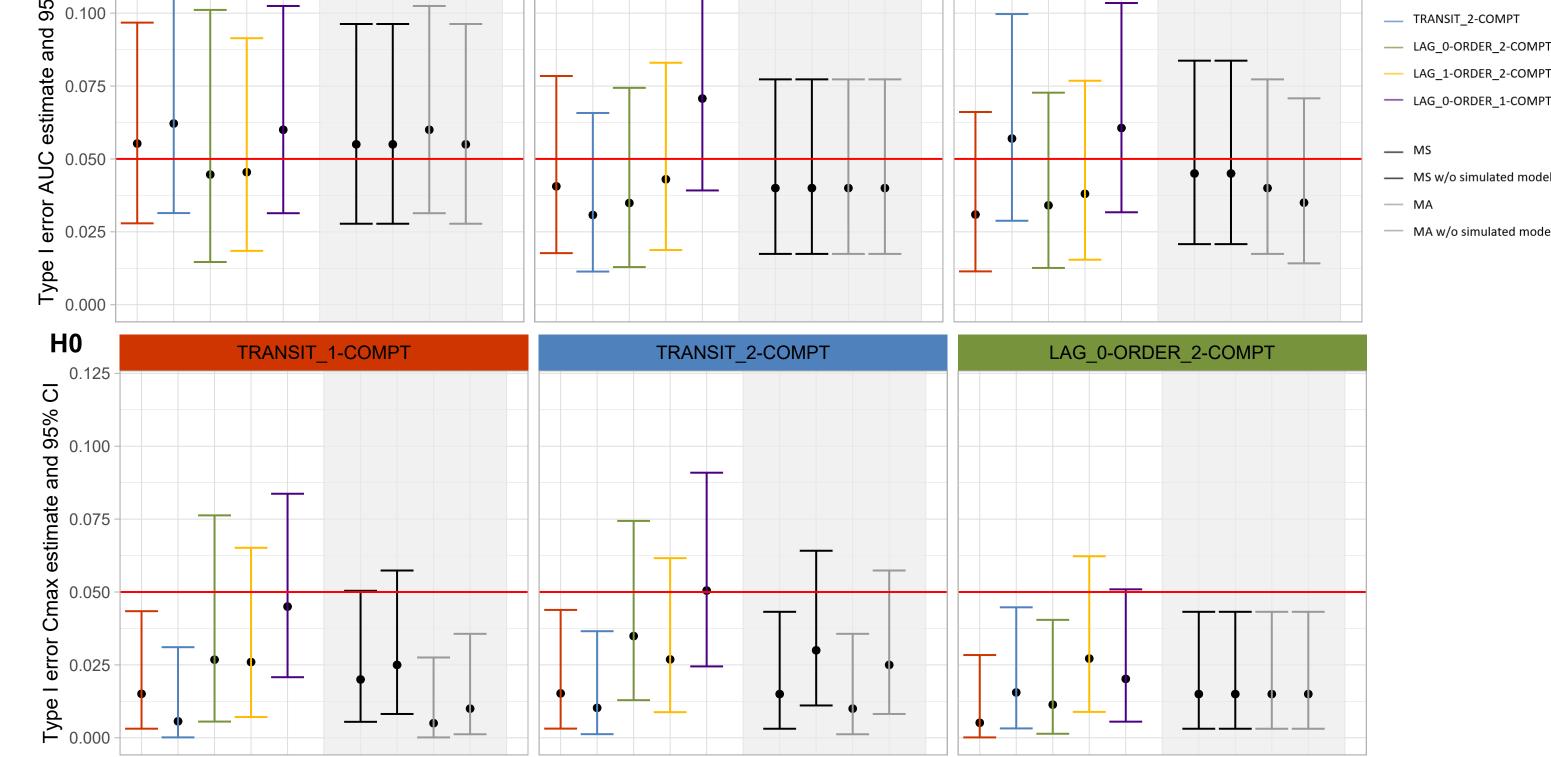
• Extension to handle a set of M candidate models

MS

- Selection based on data from treatment R only according to the Akaike Information Criteria (AIC)
- Fit of the selected model based on data from both treatment arms data and TOST

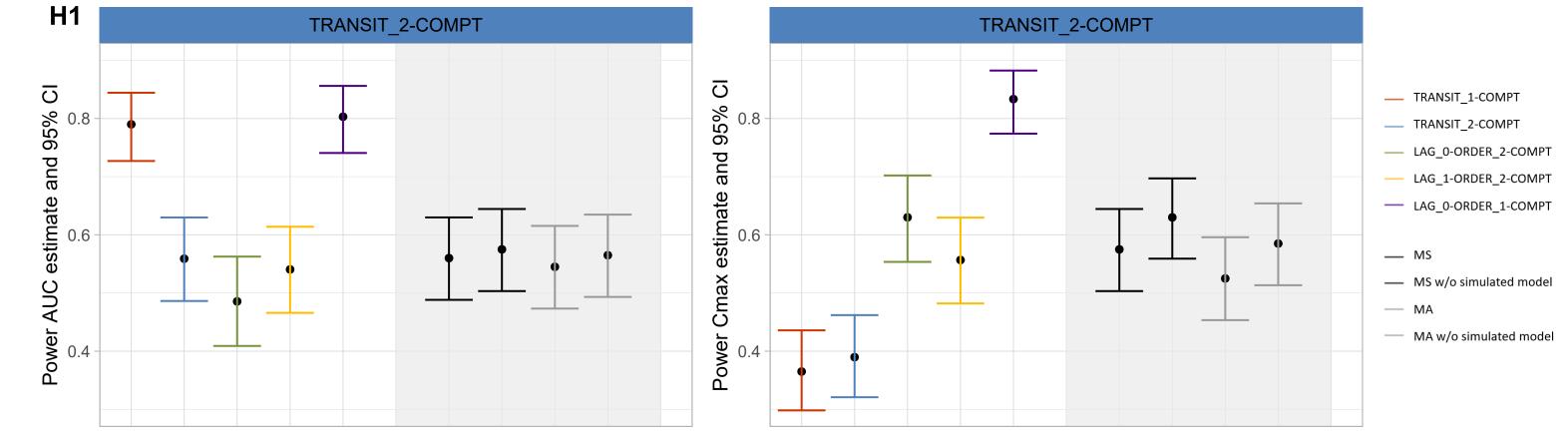
MA

- The M models are fit based on data from both treatment arms, then weights are calculated⁶:

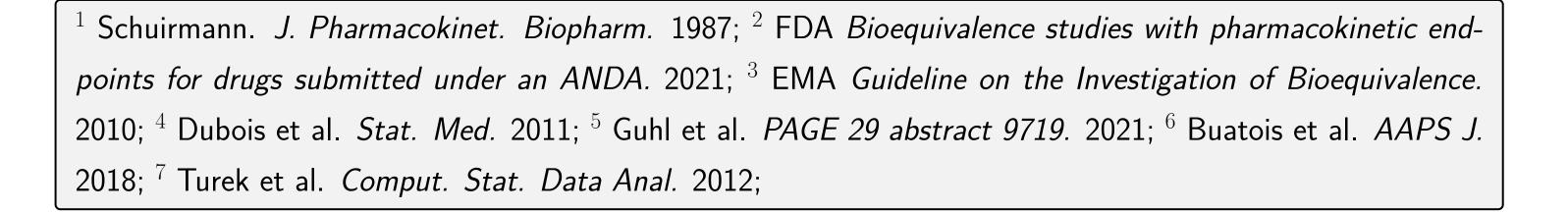

 $w_m = \frac{exp(-\Delta AIC_m/2)}{\sum_{m'=1}^{M} exp(-\Delta AIC_{m'}/2)}$

- with AIC_m the AIC of model m and $\Delta AIC_m = AIC_m min(AIC_{m=1,...,M})$
- Models with weight under 0.5% are removed and weights are updated
- Calculation of weighted $\hat{\beta}^T$ and SE $(\hat{\beta}^T)^{6,7}$ and TOST

Real case study


Data

- Phase I, single-dose, two-way crossover BE study from Servier
- N = 36 healthy volunteers (i.e. 18 per arms) and n = 22 PK samples per period Method
 - Set of M = 10 candidate models with varying number of compartments for the distribution (1 or 2-COMPT) and/or absorption types with transit compartments (TRANSIT), delayed (LAG) and zero- or first-order (0/1-order)


- \rightarrow In general, the 95%Cl around the type I error estimate includes the 5% target or is just below for C_{max}
- Power

Results

- MS: TRANSIT_2-COMPT model selected
- MA: TRANSIT_2-COMPT model with w = 1
- BE concluded with MB-TOST on AUC and C_{max}
 - $GMR_{AUC} = 1.00$ and $CI_{90_{AUC}} = [0.97; 1.04] \in [0.8, 1.25]$
 - $GMR_{C_{max}} = 1.04$ and $CI_{90_{C_{max}}} = [0.99; 1.10] \in [0.8, 1.25]$

 \rightarrow MS and MA showed similar power for AUC and higher power for C_{max} when compared to the simulated model Conclusion

The MBBE approach appears to be robust to model misspecification in our simulation study. MS and MA led to type I errors around or below 5% and ensured a reasonable power. No added value was observed with MA compared to MS. Further work is needed to assess the robustness when R and T have different PK models.

