

Population Pharmacokinetic/Pharmacodynamic (PKPD) Modeling for Long Acting Injectable(LAI) Products and Statistical Analysis for Bioequivalence(BE) Assessment

Prokash Paul^a, Seongkyu Yoon^a, Namjoon Kim^a, Nicholas Trunfio^a, Garry Handelman^b, Jaeyeon Kim^c ^aDepartment of Chemical Engineering; ^bPharmacology, Clinical Bioanalytical Chemistry, University of Massachusetts, Lowell, MA 01854, USA ^CMerrimack Pharmaceuticals, Cambridge, MA 02139, USA

Motivation

- Current BE guidance of generic formulations requires the same degree of PK metrics as much as the reference in statistical analysis on both qualitative and quantitative approaches
- The parallel BE study of LAI products is very challenging due to
 - high inter-subject variability
 - complex PKPD profiles
 - study strength and expenditure
- Office of Generic Drug (OGD) of Food and Drug Administration (FDA) is looking for innovative paradigm to reduce residual variability and to identify appropriate PK metrics
- A population PKPD modeling and subsequent statistical analysis will help to establish scientific and regulatory standards for assuring therapeutic equivalence of generic LAI products

Data Set

- Study title: A single dose, sequentially assigned, openlabel, one-period, two-treatment, parallel, comparative bioavailability study
- Sample size: 32 subjects ; healthy non-smoking male volunteers
- Analytical method: LC/MS/MS assay with an analytical range of 0.025 to 25 ng/mL

Baseline Demographic and Clinical Characteristics of Study Population

Characteristic	Value
Age (years)	
Mean[SD]	42.9[10.6]
Range	23-60
Weight(lb)	
Mean[SD]	78.6 [11.9]
Range	58.4-100.4
Height(in)	
Mean[SD]	174.0 [2.1]
Range	158.4-186.4
Body mass index(kg/m²)	
Mean[SD]	25.9[2.7]
Range	21.2-29.9

Transit compartmental model was used to describe time delay from slow absorption process. (Savic et al., 2007 J PK PD)

Suggested PK Model for LAI

- Two phase behavior could be captured with the suggested model structure
- Due to the numerical instability, non-linear mixed effect modeling is

Acknowledgement

Funded by U.S. Food and Drug Administration (FDA). This technical effort was performed under the RFA-FD-15-008 of Center for Drug Evaluation and Research.

Future Work

- Covariate structure identification
- Criteria development for BE assessment for LAI
- BE assessment for Generic LAI drugs
- Develop detail statistical assessment methods