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Abstract

In transient finite dose experiments, one typically observes not only uptake of substance, but also a considerable swelling of the corneocyte cells. In this study, we present mathematical models describing this.
(i) In a first step, we assume a quasi-static configuration. This means that one assumes different time-scales for permeation of water and substance, which allows decoupling these processes. (ii) In a second step,
we remove this assumption and describe a transient fully coupled process. For both models we present and discuss results of numerical simulations.

Static Swelling Model

This swelling model is based on a tetrakaidekahedral cell morphology that was suggested for trans-
port in the stratum corneum (SC) earlier [1]. Cells consist of corneocytes C embedded in a matrix of
lipid bilayers L. Any cell configuration (C,L) =: C = C(a, h,w,#) is uniquely defined by a set of four
geometric parameters: edge length a, height A, width w, and lipid channel thickness 6

Figure 1: Tetrakaidekahedron representing corneocyte cell C = C(a, h,w) (left). When cells are stacked, they are sur-
rounded by a lipid bilayer L = L(C, ) of thickness 6.

Let Cy := (Cy, Ly) denote an initial cell configuration. Given that the corneocyte volume changes by a
factor 0 < «, we assume that the resulting configuration of the new cell (C, L) = C = C(«) is subject to
the following contraints:

a) The corneocyte volume decreases/increases by a factor «:
V(C) =aV(Cp) (1a)
b) The volume of the lipid bilayer remains constant:
V(L) = V(L) (1b)
c) The area of the cornified envelope remains constant:
A(OLNOC) = A(OLy N oCy) (1c)
Here, V(X)) and A(S) denote the volume of X and the surface area of a surface S respectively.

Suppose, that water uptake can be described explicitly by a differential equation w.r.t. the time vari-
able ¢:

aft) = fla),a(0) =1 (2)

Then, by means of (1), the cell configuration C = (C, L) is also a function of time C = C(¢,Cy). The
barrier properties of such a deformed membrane can be computed as described in [1].

Resulis

1. For the sake of simplicity, let us assume a gradual constant increase in volume (f = 1). Solving
(1)-(2) for Cy defined by ag = 14.7um, hg = 1um, wg = 30um, 6y = 0.1um yields the following results:
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Figure 2: lllustration of a swelling membrane (left), and corresponding analysis of geometric parameters (right). Note:
Vertical swelling is predominant in this case.

2. Depending on Cj, the constraints in (1) also restrict the potential deformations:
0 < amin(Co, Lo) < a < amax(Co, L)

Figure 3 illustrates this for Cy = Cy(ag, ho, wo, 6y) with parameters as above, but with variable edge
length ay.
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Figure 3: Minimum volume decrease (shrinking, left), maximum volume increase (swelling, right).

Dynamic Swelling Model

For this model, we assume that the corneocytes (and thus the SC as a whole), behave like a hydrogel.
Employing mixture theory, the constituents are a fluid phase f (consisting, e.g., of water in the cor-
neocytes, lipids etc), and a solid phase s (consisting of structural elements such as keratin filaments).
Numerous swelling models have been suggested earlier; here, we use an extension of a four-phasic
model suggested in [2]. For small strains (small deformations) the model reads as follows:

Momentum of mixture : Vie —pI] — FOp(zoc0 + Y  2c;) V¥ =0 (3a)
i
. . F
Mass of mixture : OV - 1) + V- [=Prr(Vp + ﬁ@ 2ic;)) V)| =0 (3b)
(4
73
Mass of component i : O(Prc;) +V - [=DrDi(Ve; + cz-'z—TV\If)] =0 (3¢)

Charges V- [—eeVV] = F(zco+ » zc;)  (3d)
[

The primary unknowns are the (gradient of the) pressure p, the deformation of the solid matrix 1,
the concentrations c; of substances, and the electric potential V. Substance i may be charged as
indicated by corresponding valence z;,. Charges fixed to the solid phase are regarded as a material
property, and are expressed by a concentration ¢y (relative to the volume of the fluid phase), and
valence zj. Additional constants are the ion diffusivities D;, the Faraday constant F' ~ 96485.33 C'/mal,
the gas constant R = 8.3144 —*—, and the temperature T.

System (3) will be solved in a simplified form: First, let us assume an electrostatic equilibrium:
20C0 + Z zic; ~ 0.

(]
Second, if no gradient in the electric potential is applied across the membrane, the system reduces
to the quasi-static Biot equation. Third, we assume that the stresses ¢ are isotropic and given by the
linear elastic law:

1 . Ou;
o = Mr(e)l +2ue, € = 5 (fﬂuz — ﬂ)

Results

The simplified problem is a first step and allows studying interactions between pressure p and defor-
mation « as illustrated in Figure 4

DispNeodal Magnitude

DispNodal Magnitude
0.0266 -

E0.0Q

Eo.m

E0.02

0

DispNodal Magnitude

E0.02 -

Eo.m

Figure 4: Transient deformation of
a skin sample after an injection of
a bolus with high pressure at three
centers.
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Conclusions

e Presented two models for swelling of corneocytes. Substance transport is treated independently
(static model) or included implicitly (dynamic model).

e The static model is purely based on geometric considerations such conservation of volume and
surface. Swelling must be added explicitly, e.g., by (2).

e Depending on the geometric configuration of the cell, the maximum increase in volume observed is
300-600 %. This is consistent with [3, 4]. However, for some configurations, the increase in volume
is limited.

e The dynamic model is based on mixture theory and models the skin as a hydrogel. This approach
yields a description that is consistent with thermodynamics. Although the static model induces a
homogeneous swelling, Egns. (2) and (3b) reveal the similiarity between both models.

Forthcoming Research

e Extend the implementation of (3) to finite strains (large deformations).
e Comparison with experimental data, e.g., for non-trivial potential gradients.
e Include non-isotropic material properties for stresses as well as for diffusion coefficients.
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