Modelling and Simulation of Corneocyte Swelling: A Theoretical Contribution on the Barrier Properties of the Skin

Arne Nägel, Martin Scherer, Gabriel Wittum Goethe-Center for Scientific Computing, Goethe Universität Frankfurt am Main Kettenhofweg 139, D-60325 Frankfurt a.M., Germany

naegel@gcsc.uni-frankfurt.de

Abstract

In transient finite dose experiments, one typically observes not only uptake of substance, but also a considerable swelling of the corneocyte cells. In this study, we present mathematical models describing this. (i) In a first step, we assume a quasi-static configuration. This means that one assumes different time-scales for permeation of water and substance, which allows decoupling these processes. (ii) In a second step, we remove this assumption and describe a transient fully coupled process. For both models we present and discuss results of numerical simulations.

Static Swelling Model

This swelling model is based on a tetrakaidekahedral cell morphology that was suggested for transport in the stratum corneum (SC) earlier [1]. Cells consist of corneocytes C embedded in a matrix of lipid bilayers L. Any cell configuration $(C, L) =: C = C(a, h, w, \theta)$ is uniquely defined by a set of four

Dynamic Swelling Model

For this model, we assume that the corneocytes (and thus the SC as a whole), behave like a hydrogel. Employing mixture theory, the constituents are a fluid phase f (consisting, e.g., of water in the corneocytes, lipids etc), and a solid phase s (consisting of structural elements such as keratin filaments). Numerous swelling models have been suggested earlier; here, we use an extension of a four-phasic model suggested in [2]. For small strains (small deformations) the model reads as follows:

geometric parameters: edge length a, height h, width w, and lipid channel thickness θ :

Figure 1: Tetrakaidekahedron representing corneocyte cell C = C(a, h, w) (left). When cells are stacked, they are surrounded by a lipid bilayer $L \equiv L(C, \theta)$ of thickness θ .

Let $C_0 := (C_0, L_0)$ denote an initial cell configuration. Given that the corneocyte volume changes by a factor $0 \le \alpha$, we assume that the resulting configuration of the new cell $(C, L) = C = C(\alpha)$ is subject to the following contraints:

a) The corneocyte volume decreases/increases by a factor α :

 $V(C) = \alpha V(C_0) \tag{1a}$

b) The volume of the lipid bilayer remains constant:

 $V(L) = V(L_0)$

c) The area of the cornified envelope remains constant:

$$\begin{array}{ll} \text{Momentum of mixture}: & \nabla[\sigma - pI] - F\Phi_f(z_0c_0 + \sum_i z_ic_i)\nabla\Psi = 0 & \text{(3a)} \\ \text{Mass of mixture}: & \partial_t(\nabla \cdot \vec{u}) + \nabla \cdot [-\Phi_f\kappa(\nabla p + \frac{F}{RT}(\sum_i z_ic_i)\nabla\Psi)] = 0 & \text{(3b)} \\ \text{Mass of component } i: & \partial_t(\Phi_fc_i) + \nabla \cdot [-\Phi_fD_i(\nabla c_i + c_i\frac{z_iF}{RT}\nabla\Psi)] = 0 & \text{(3c)} \\ \text{Charges}: & \nabla \cdot [-\epsilon\epsilon_0\nabla\Psi] = F(z_0c_0 + \sum_i z_ic_i) & \text{(3d)} \end{array}$$

The primary unknowns are the (gradient of the) pressure p, the deformation of the solid matrix \vec{u} , the concentrations c_i of substances, and the electric potential Ψ . Substance i may be charged as indicated by corresponding valence z_i . Charges fixed to the solid phase are regarded as a material property, and are expressed by a concentration c_0 (relative to the volume of the fluid phase), and valence z_0 . Additional constants are the ion diffusivities D_i , the Faraday constant $F \approx 96485.33 C/mol$, the gas constant $R = 8.3144 \frac{J}{molK}$, and the temperature T.

System (3) will be solved in a simplified form: First, let us assume an electrostatic equilibrium:

 $z_0 c_0 + \sum_i z_i c_i \approx 0.$

Second, if no gradient in the electric potential is applied across the membrane, the system reduces to the quasi-static Biot equation. Third, we assume that the stresses σ are isotropic and given by the linear elastic law:

$$\sigma = \lambda tr(\epsilon)I + 2\mu\epsilon, \ \epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Results

The simplified problem is a first step and allows studying interactions between pressure p and defor-

 $A(\partial L \cap \partial C) = A(\partial L_0 \cap \partial C_0)$

(1c)

(1b)

Here, V(X) and A(S) denote the *volume* of X and the *surface area* of a surface S respectively.

Suppose, that water uptake can be described explicitly by a differential equation w.r.t. the time variable *t*:

$$\dot{\alpha}(t) = f(\alpha), \alpha(0) = 1 \tag{2}$$

Then, by means of (1), the cell configuration C = (C, L) is also a function of time $C = C(t, C_0)$. The barrier properties of such a deformed membrane can be computed as described in [1].

Results

1. For the sake of simplicity, let us assume a gradual constant increase in volume (f = 1). Solving (1)-(2) for C_0 defined by $a_0 = 14.7 \mu m$, $h_0 = 1 \mu m$, $w_0 = 30 \mu m$, $\theta_0 = 0.1 \mu m$ yields the following results:

mation \vec{u} as illustrated in Figure 4:

Conclusions

- Presented two models for swelling of corneocytes. Substance transport is treated independently (static model) or included implicitly (dynamic model).
- The **static model** is purely based on geometric considerations such conservation of volume and surface. Swelling must be added explicitly, e.g., by (2).
- Depending on the geometric configuration of the cell, the maximum increase in volume observed is 300-600 %. This is consistent with [3, 4]. However, for some configurations, the increase in volume is limited.
- The dynamic model is based on mixture theory and models the skin as a hydrogel. This approach

Figure 2: Illustration of a swelling membrane (left), and corresponding analysis of geometric parameters (right). Note: Vertical swelling is predominant in this case.

2. Depending on C_0 , the constraints in (1) also restrict the potential deformations:

 $0 \le \alpha_{\min}(C_0, L_0) \le \alpha \le \alpha_{\max}(C_0, L_0).$

Figure 3 illustrates this for $C_0 = C_0(a_0, h_0, w_0, \theta_0)$ with parameters as above, but with variable edge length a_0 .

Figure 3: Minimum volume decrease (*shrinking*, left), maximum volume increase (*swelling*, right).

yields a description that is consistent with thermodynamics. Although the static model induces a homogeneous swelling, Eqns. (2) and (3b) reveal the similiarity between both models.

Forthcoming Research

Extend the implementation of (3) to finite strains (large deformations).

Comparison with experimental data, e.g., for non-trivial potential gradients.
Include non-isotropic material properties for stresses as well as for diffusion coefficients.

References

- [1] A. Naegel, M. Heisig, and G. Wittum. A comparison of two- and three-dimensional models for the simulation of the permeability of human stratum corneum. *Eur J Pharm Biopharm*, 72(2):332 – 338, 2009.
- [2] J.M. Huyghe and J.D. Janssen. Quadriphasic mechanics of swelling incompressible porous media. *International Journal of Engineering Science*, 35(8):793802, Jun 1997.
- [3] J.A. Bouwstra, A. de Graaff, G.S. Gooris, J. Nijsse, J.W. Wiechers, and A.C. van Aelst. Water distribution and related morphology in human stratum corneum at different hydration levels. *J Invest Dermatol*, 120(5):750–758, May 2003.
- [4] T. Richter, C. Peuckert, M. Sattler, K. Koenig, I. Riemann, U. Hintze, K-P. Wittern, R. Wiesendanger, and R. Wepf. Dead but highly dynamic-the stratum corneum is divided into three hydration zones. *Skin Pharmacol Physiol*, 17(5):246–257, 2004.