M1430 -13-84

Using a Physiologically-based Pharmacokinetic Absorption Model to **Establish Clinically Relevant Dissolution Safe Space for Oseltamivir in Adult** and Pediatrics

Lei Miao^{1,2}, Fang Wu^{1,2}*, Liang Zhao², Kimberly Raines¹, Paul Seo¹ ¹ Division of Biopharmaceutics, Office of Pharmaceutical Quality; ² Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993

***CONTACT INFORMATION:** Fang Wu, Email: Fang.Wu@fda.hhs.gov

PURPOSE

- Influenza (flu) is a contagious respiratory disease caused by influenza viruses which affects all age groups, resulting in an average of 20,000 death per year in the United States.
- ✤ Oseltamivir (OP, Tamiflu®, Biopharmaceutics Classification) System (BCS) Class I), an ester prodrug of the antiviral molecule oseltamivir carboxylate (OC), is the first FDA approved oral neuraminidase inhibitor to treat influenza A, B.
- **Given the strategic importance of deploying OP in flu seasons** for adults and pediatric populations, a timely assessment of drug product quality and bioequivalence (BE) through evaluation of clinically relevant critical quality attributes (CQAs) is highly desired.

OBJECTIVE(S)

- > To establish a physiologically-based pharmacokinetic (PBPK) absorption model for biopharmaceutics for both OP and its active metabolite oseltamivir carboxylate acid (OC) in adults and extrapolated models to pediatric groups with different ages.
- identify key parameters and set clinically relevant > To specifications/safe range of dissolution profiles for OP in adults and pediatric populations.

METHOD(S)

а.	Human Adult PBPK Absorption Model for Biopharmaceutics Development & Validation	b. Human Pediatric PBPK Ak for Biopharmace Extrapolation & Val		
•	Absorption (OP): described by ACAT™ model Distribution and PK (OP and OC): PBPK-Plus™ module Dissolution model:	 Physiology change: predicted us PEAR[™] and ACAT[™] module Drug-dependent parameters: obt model CES1 concentration & renal clea changed 		
•	use in vitro dissolution data as input Physiologies: generated by PEAR™ Physiology module Metabolism of OP to OC: liver carboxylesterase 1 (CES1) Renal clearance (OC) : filtration & active secretion			
•		c. Pediatric & Adult Mode		
•	Permeability/Perfusion-limited disposition			
	model for liver and other organs.	 Virtual BE performed to eva products and set clinically r specifications 		

PBPK platform: GastroPlus[®] 9.6

bsorption Model idation

ing Age-related

ained from adult arance of OC were

I Application

aluate generic elevant

Figure 1: Simulated and observed concentration time profiles for OP and OC in adults and pediatrics based on PBPK absorption model for biopharmaceutics

Table 1: Validation of PBPK absorption model for biopharmaceutics in adult and pediatric population Doca OD Dradiation Error (0/) OC Dradiation Error (0/)

Sludy	FOIM	Dose	OF FIE		EIIOI(%)	UC Fle		EITOI (%)
		mg * mg/kg	C _{max}	AUC _{0-t}	AUC 0-∞	C _{max}	AUC _{0-t}	AUC 0-∞
1 Adult	Caps	75	-0.1	7.8	-4.4	5.6	12.2	4.42
2 Adult	Caps	75	-14.7	10.2	8.1	2.15	12.8	3.73
3 Adult	Susp	75	-8.4	-9.1	-9.1	0.4	-1.5	-1.5
4 Adult	Susp	75	-14.8	-2.2	-8.7	-6.0	-2	-3.2
5 Adult	Susp	75	-6.4	-7.1	-8.6	-5.5	-1.7	-1.7
0-2 m	Susp	2*	-25.3	7	5	-3	11	-1
3-9 m	Susp	2*	-22.1	-15.3	-14.5	-16.6	-5.3	N/A
1-5 y	Susp	2*	-15.3	-11.2	-10.5	-13.5	15.5	N/A
9-18 y	Susp	2*	-20.3	-19.5	-18.3	-10.6	-6.5	N/A

RESULTS (CONTINUED)

✓ The models predicted in vivo PK of Immediate Release (IR) capsules and suspensions of OP with prediction error within ± 20% for both OP and OC in adults and ± 25% in pediatrics (Figure 1 and Table 1).

The virtual BE analysis indicated that drug products with the dissolution boundary at 9% slower than dissolution profile of pivotal bio-batch could maintain BE to RLD in adults. In contrast, a stringent trend of dissolution boundary (safe space) was observed for pediatrics (8% slower for 8-18-year-old adolescents, 6% slower for children, infants and neonates).

CONCLUSION(S)

This study highlights the utility of PBPK absorption modeling and simulation for biopharmaceutics in prediction of BE and providing a quantitative basis for setting clinical relevant specifications for dissolution for OP in both adults and pediatric populations.

Figure 2: Population and virtual BE analysis between reference products using pivotal dissolution profile (pink curve) and theoretical slower dissolution profile (green curve) in adults (A, B) and pediatric populations (C-F) to determine the "safe space" for dissolution profiles. Dissolution profile of 75 mg Tamilfu® was used as reference listed drug (RLD).

