

Assessing In Vitro Drug Release from Multivesicular Liposome: **Comparison of Reverse Dialysis and Rotary Shaking Methods** Soumyarwit Manna^{1,2}, Peter Petrochenko¹, Yong Wu², Bonhye Koo^{1,2}, Ke Ren¹, Lynn Chen^{1,2}, Yixuan Dong¹, Xiaoming Xu¹, Stephanie Choi¹, Darby Kozak¹, Yan Wang¹, Jiwen Zheng²

^{1.} Division of Therapeutic Performance, Office of Research Standards, Office of Generic Drugs, Center for Drug Evaluation and Research,^{2.} Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993

Email : soumyarwit.manna@fda.hhs.gov

PURPOSE

- Bupivacaine (BPV), an amide type local anesthetic, has a relatively short half-life $(t_{1/2-BPV}) \sim 2.7$ hours. BPV, when encapsulated in a multivesicular liposome (MVL) formulation, exhibits sustained release characteristics
- Multivesicular liposomes (MVLs) consist of a non-lamellar honeycomb structure with non-concentric aqueous chambers
- Significantly increased elimination t_{1/2-BPV} ~ 34 hours is observed, which is likely influenced by various physicochemical parameters of the MVL such as:
- > MVL vesicle morphology and size (both external and internal physical) dimension)
- > Rate of drug partitioning between hydrophilic (aqueous phase) and lipophilic (lipid bilayers) components
- It is *hypothesized* that alteration of MVL morphology over time influences the in vitro drug release rate

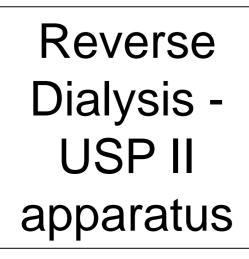
OBJECTIVES

- Characterize the vesicle size and morphology of the BPV-MVL complex formulation
- Conduct in vitro drug release in 50 mM PBS with and without Human Serum Albumin (HSA) over a period of 7 days - expected complete drug release profile (5 times the $t_{1/2-BPV}$)
- Analyze the effect of different parameters such as a) agitation, b) temperature, c) dissolution medium, and d) dissolution set-up on the in vitro drug release rate

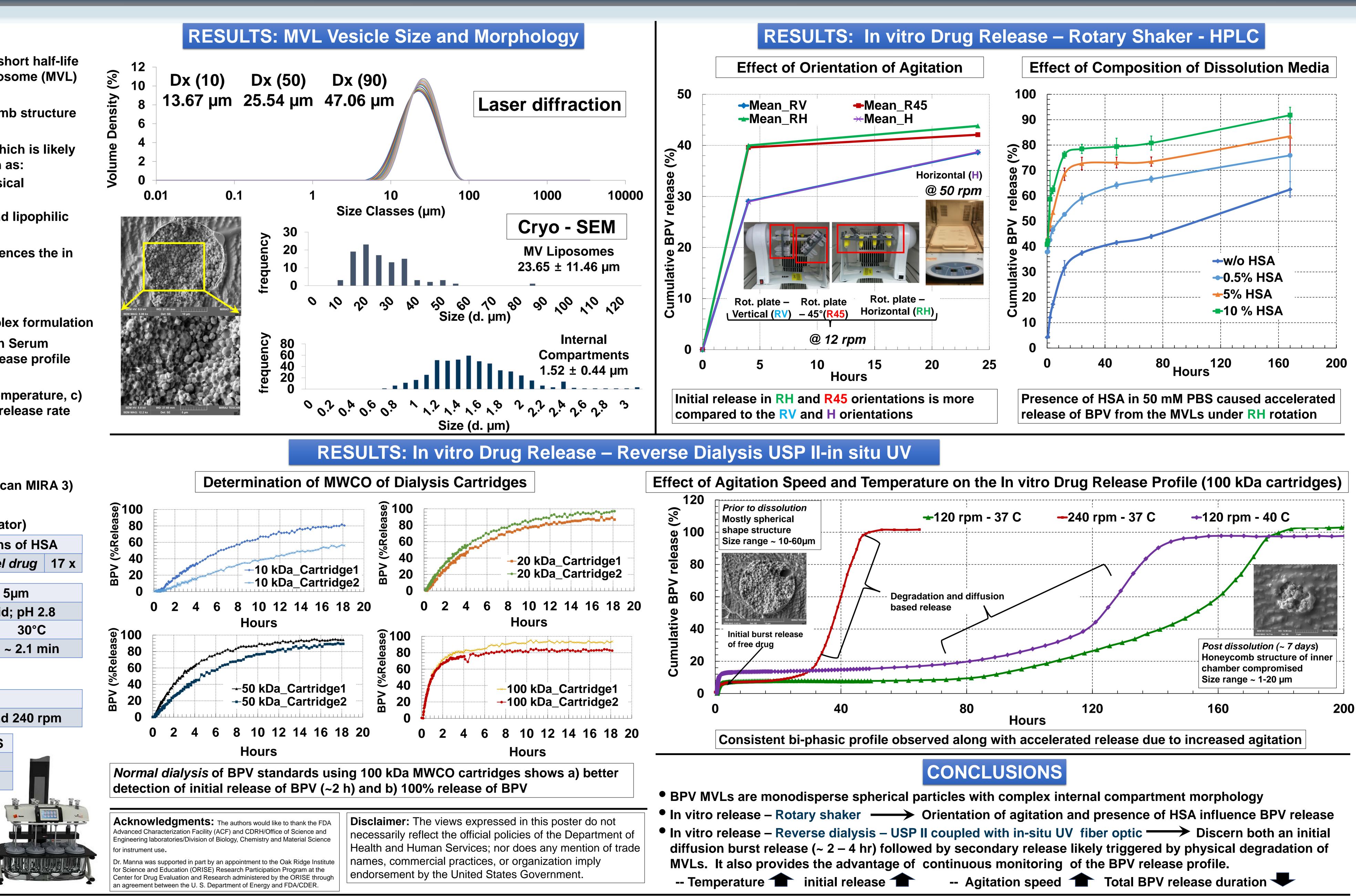
METHODS

- MVL vesicle size Laser diffraction (Malvern Mastersizer 3000)
- MVL vesicle morphology Cryo-scanning electron microscopy (Tescan MIRA 3)
- In vitro dissolution set-up and drug release detection techniques:
- Rotary shaker mechanism (Thermo Scientific[™] Tube Revolver / Rotator)

Dissolution media	50 mM PBS (pH 7) with varied concentrations					
Temperature	37°C	Rotation	12 rpm	Dilution of model		


HPLC Column	Agilent ZORBAX SB-CN – 4.6x150 mm, 5µm				
Mobile phase	40% Acetonitrile + 0.01% Trifluoroacetic acid; pH				
Flow rate	1 mL/min	Temperature	30 °		
λ _{BPV}	263 nm	Retention time	~ 2.1		

Reverse dialysis (USP II apparatus – Teledyne Hanson Research)


Dissolution media		50 mM PBS (pH 7)				
Temperature	37°C and 40°C		Rotation	120 rpm and		
Dialysis cartridges		10-100 kDa (MWCO) conditioned with SDS				
Drug detection		In situ UV-Vis fiber optic probe				
Dilution of model drug		17x				

Rotary shaker device

