

Assessing In Vitro Drug Release from Multivesicular Liposome: Comparison of Reverse Dialysis and Rotary Shaking Methods

<u>Soumyarwit Manna^{1,2}</u>, Peter E Petrochenko¹, Yong Wu², Yixuan Dong¹, Bonhye Koo^{1,2}, Lynn Chen¹, Ke Ren¹, Berk Oktem², Stephanie Choi¹, Xiaoming Xu¹, Darby Kozak¹, Yan Wang¹, Jiwen Zheng²

^{1.} Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD ^{2.} Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD

PURPOSE

- Bupivacaine (BPV), an amide type local anesthetic, has a relatively short half-life $(t_{1/2-BPV}) \sim 2.7$ hours. BPV, when encapsulated in a multivesicular liposome (MVL) formulation, exhibits sustained release characteristics
- Multivesicular liposomes (MVLs) consist of a non-lamellar honeycomb structure with non-concentric aqueous chambers
- Significantly increased elimination $t_{1/2-BPV} \sim 34$ hours is observed, which is likely influenced by various physicochemical parameters of the MVL such as:
- MVL vesicle morphology and size (both external and internal physical dimension)
- > Rate of drug partitioning between hydrophilic (aqueous phase) and lipophilic (lipid bilayers) components
- It is *hypothesized* that alteration of MVL morphology over time influences the in vitro drug release rate

OBJECTIVES

- Characterize the vesicle size and morphology of the BPV-MVL complex formulation
- Conduct in vitro drug release in 50 mM PBS with and without Human Serum Albumin (HSA) over a period of 7 days - expected complete drug release profile (5 times the t_{1/2-BPV})
- Analyze the effect of different parameters such as a) agitation, b) temperature, c) dissolution medium, and d) dissolution set-up on the in vitro drug release rate

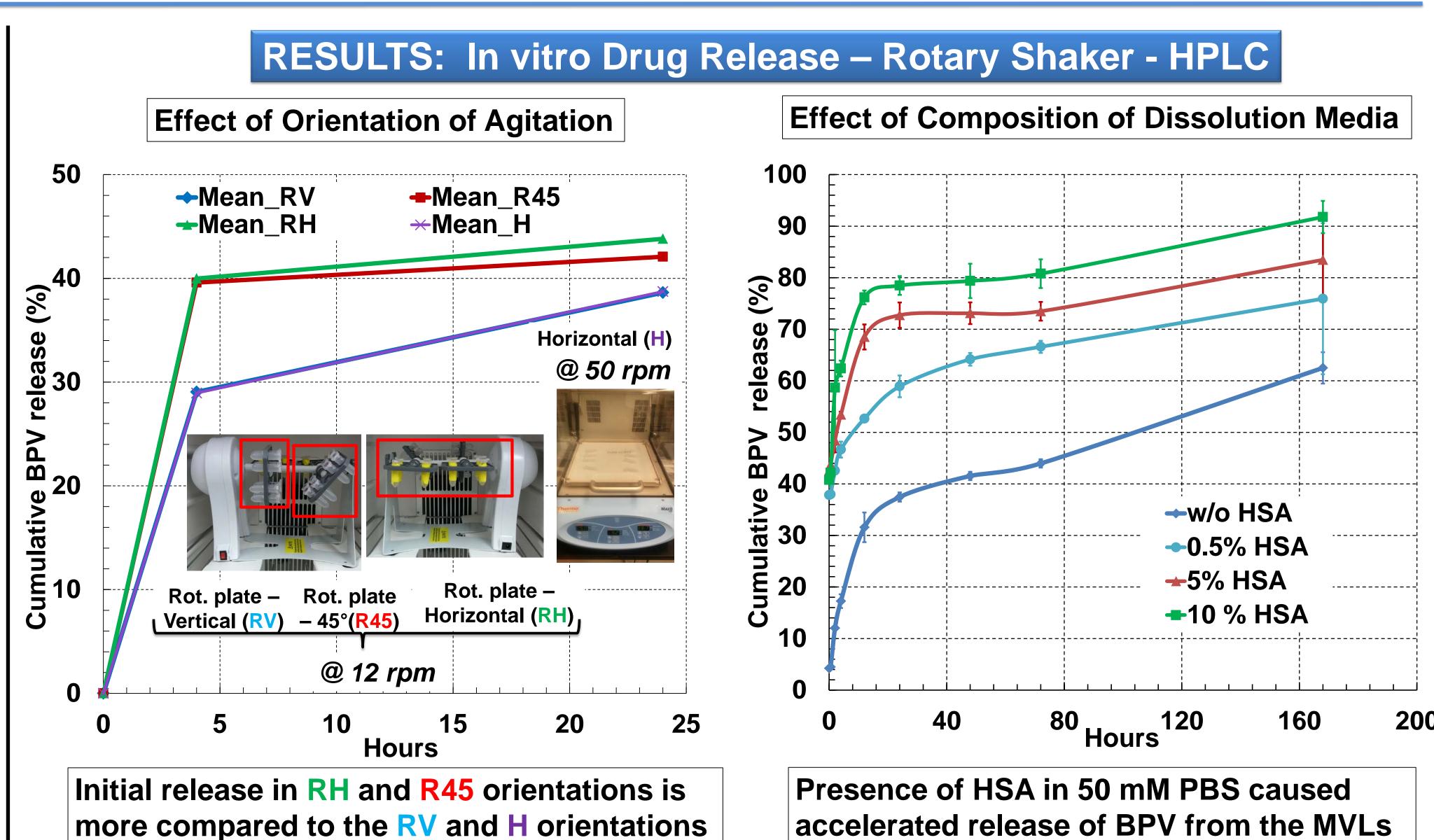
METHODS

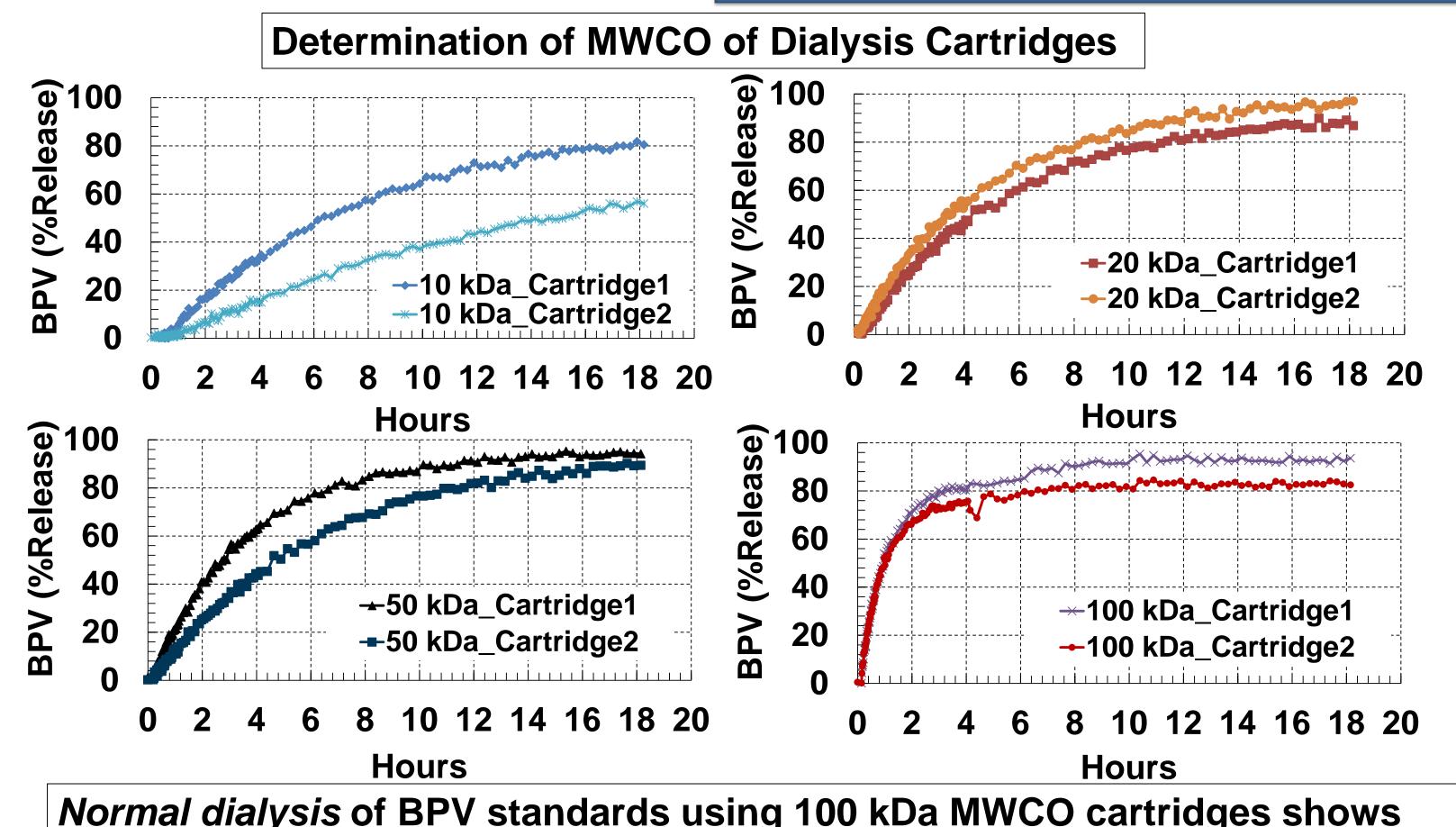
- MVL MVL vesicle size Laser diffraction (Malvern Mastersizer 3000)
- vesicle morphology Cryo-scanning electron microscopy (Tescan MIRA 3)
- In vitro dissolution set-up and drug release detection techniques:
- Rotary shaker mechanism (Thermo Scientific™ Tube Revolver / Rotator)

Dissolution media	50 mM PBS (pH 7) with varied concentrations of HSA								
Temperature	37°C	Rotation	12 rpm	Dilution of model drug		17 x			
HPLC Column	Agilent ZORBAX SB-CN – 4.6x150 mm, 5µm								
Mobile phase	40% Acetonitrile + 0.01% Trifluoroacetic acid; pH 2.8								
Flow rate	1	mL/min	Temper	Temperature		30°C			
λ_{BPV}	2	263 nm	Retention	Retention time		~ 2.1 min			

Reverse dialysis (USP II apparatus – Teledyne Hanson Research)

Dissolution media	50 mM PBS (pH 7)						
Temperature	37°C and 40°C	Rotation	120 rpm	and 240 rpm			
Dialysis cartridges	100 kDa (MWCO)	100 kDa (MWCO) conditioned with SDS					
Drug detection	In situ UV-Vis fib	In situ UV-Vis fiber optic probe					
Dilution of model dru	ıg 17x						


Rotary shaker device


Reverse
Dialysis -USP II
apparatus

RESULTS: In vitro Drug Release – Rev. Dialysis USP II-in situ UV

Normal dialysis of BPV standards using 100 kDa MWCO cartridges shows a) better detection of initial release of BPV (~2 h) and b) 100% release of BPV

Effect of Agitation Speed and Temperature on the In vitro Drug Release Profile 120 Prior to dissolution **→**120 rpm - 37 C **—240 rpm - 37 C →120 rpm - 40 C** Mostly spherical shape structure | Size range ~ 10-60µm | Degradation and diffusion based release **Initial burst** release of Post dissolution (~ 7 days) free drug Honeycomb structure of inner chamber compromised Size range ~ 1-20 µm 80 120 160 200 Hours

Consistent bi-phasic profile observed along with accelerated release due to increased agitation

CONCLUSIONS

- BPV MVLs are monodisperse spherical particles with complex internal compartment morphology
- In vitro release Rotary shaker ——— Orientation of agitation and presence of HSA influence BPV release
- In vitro release Reverse dialysis USP II coupled with in-situ UV fiber optic Discern both an initial diffusion burst release (~ 2 − 4 hr) followed by secondary release likely triggered by physical degradation of MVLs. It also provides the advantage of continuous monitoring of the BPV release profile.
- -- Temperature 👚 initial release 👚 -- Agitation speed 👚 Total BPV release duration 🛡

ACKNOWLEDGEMENTS

The authors would like to acknowledge the FDA Advanced Characterization Facility (ACF) and CDRH/OSEL/DBCMS for instrument use.

DISCLAIMER

The views expressed in this poster do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.