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 Generics represent 88% of prescriptions for a cost of 28% of drug market1.
 From 2011 through 2016, suspension formulations represented 29% of the

FDA approved topical ophthalmic formulations2.
 Demonstrating therapeutic bioequivalence (BE) for ophthalmic suspensions

is challenging, costly and time consuming.
 Critical formulation attributes for ophthalmic suspensions such as particle

size (PS) and viscosity could impact in vivo performance.
 However these formulation attributes repercussion on drug ocular

disposition has not been well characterized.
 Quantitative methods such as physiologically-based pharmacokinetic

modeling (PBPK) can support regulatory decisions regarding BE.

 Verify an Ocular Compartmental Absorption & Transit (OCAT)-PBPK model
predicting the concentration-time course of dexamethasone (Dex) in ocular
tissues and plasma after an injection of TOBRADEX ST© in the rabbit eye.

 Investigate model abilities to simulate the impact of PS and viscosity on Dex
disposition in ocular tissues.

 Understand the impact of PS and viscosity on maximum concentration
(Cmax) and area under the curve (AUC) for different bio-phases.

 In vivo analysis of Dex ocular disposition following the unilateral
administration of 30 µL of TOBRADEX ST© (Dex, 0.05%/tobramycin, 0.3%,
ƞ= 72.7 cP) in rabbit eye.

 OCAT-PBPK verification (GastroPlusTM 9.5) TOBRADEX ST© in vivo data.
 Analysis of PS (literature data3) and viscosity (TOBRADEX© (Dex, 0.1%/

tobramycin, 0.3%, ƞ= 1.67 cP, NDA 50-818 Pharmacology review4)) impact
on Dex ocular disposition.

 Sensitivity analysis was conducted to understand the impact of PS and
viscosity on Cmax and AUC in aqueous humor and plasma.
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Figure 1: A) Rabbit eye anatomy. B) Model structure used to describe pharmacokinetics of Dex.
OCAT: Ocular Compartmental Absorption & Transit ; ACAT: Advanced Compartmental and Transit
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Figure 3: A) Model-based simulation for
cornea concentration-time course after
unilateral administration of three Dex 0.1%
formulations to rabbit with different mean PS
(D50= 5.5 ; 11 ; 22 µm)3.
B) Concentration-time course in aqueous
humor following the unilateral administration of
30 µl of TOBRADEX© 0.1% (D50=4, ƞ=1.67cP)
in a rabbit eye. DR was estimated to be 0.4
min-1 to account for reduced viscosity of this
formulation4.
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Figure 2: Concentration-time course following
the unilateral administration of 30 µl of
TOBRADEX ST© 0.05% in a rabbit eye. Dots
represent experimental data for cornea
(green), conjunctiva (orange) aqueous humor
(red) and plasma (blue). Aqueous humor data
from NDA 50-818 pharmacology review4 (pink)
were also used to calibrate the model. Lines
represent model simulations after manual
optimization of tissue permeabilities. Cornea
permeability was fixed based on in vitro
permeation test. Drainage rate (DR) was set to
0.1 min-1 to account for TOBRADEX ST©

viscosity (ƞ= 72.7 cP) according to literature5.

 An OCAT-PBPK model using Gastroplus 9.5 was verified based on in vivo rabbit
data for Dex ocular distribution following TOBRADEX ST© administration (Fig 2).

 The developed OCAT-PBPK model well-predicts the impact of particle size and
viscosity on Dex disposition in rabbit eyes (Fig 3) .

 Model-based simulations indicate (Fig 4):
 Limited impact of a reasonable particle size modification (0.5< D50 <10µm)

on aqueous humor Cmax & AUC.
 Significant impact of viscosity (0.1< DR <1 min-1) on aqueous humor Cmax &

AUC.
 Plasma exposure cannot be used as a surrogate for ocular exposure,

because the rate and extent of Dex appearing in the systemic circulation do
not reflect the rate and extent of Dex delivery to the ocular tissues.

Plasma
Figure 4: Impact of mean PS (0.5< D50 <10
µm) and viscosity (0.1< DR <1 min-1) on Dex
Cmax and AUC0t in A) aqueous humor and B)
plasma, following the unilateral administration
of 30 µl ophthalmic suspension 0.05% in a
rabbit eye.
Baseline values for TOBRADEX ST © are
presented by the grey dots (DR=0.1 min-1 and
D50=5 µm).
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