

Preparation, Characterization and In Vitro Release Test (IVRT) Study of Tretinoin-Loaded Microspheres in a Topical Gel Product

Muhammad Ashraf¹, Ahmed S Zidan¹

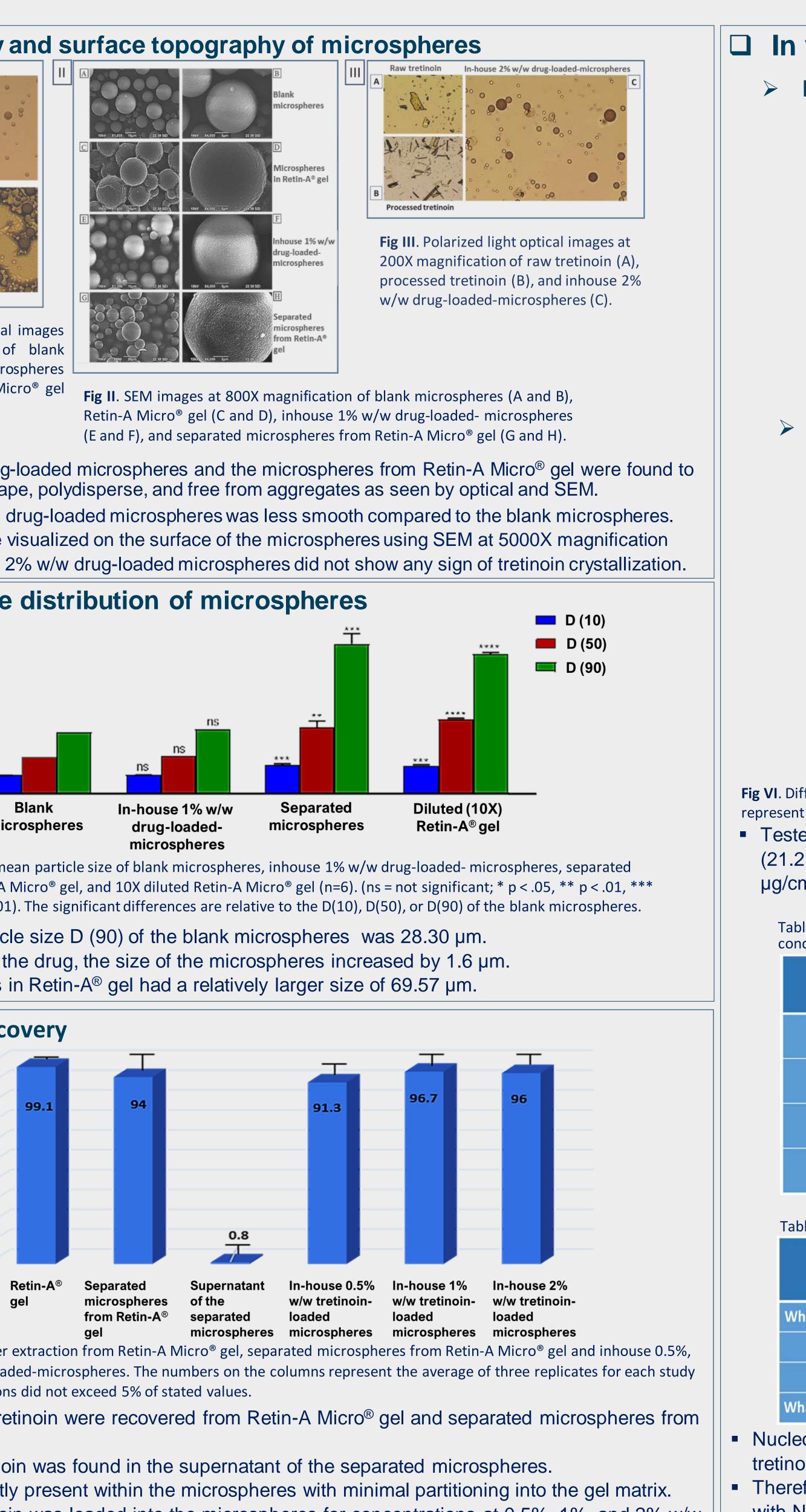
¹Division of Product Quality Research, Office of Pharmaceutical Quality and ²Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA

CONTACT INFORMATION: Ghale

PURPOSE

Over five decades, tretinoin has been used in the of different indications, including acne treatment vulgaris, however, topical tretinoin may cause skin irritation in some patients and is susceptible to photo degradation. Innovation led to the formulation of tretinoin in porous microparticles (microspheres) that offered controlled drug release, decreased irritation, and improved stability. Developing a generic product for tretinoin may involve utilizing the same microsphere product (i.e., Microsponge[®]) utilized in the reference product, or manufacturing the microspheres in-house. In both cases, the microspheres in the test product may exhibit different physicochemical characteristics than the reference product. These variations in physicochemical characteristics may result in different bioavailability and may impact the bioequivalence of the test product compared to the reference product (also see poster ID 895060).

OBJECTIVE


The objective of this study was to compare the physiochemical properties between the in-house prepared tretinoin microspheres with the microspheres that were separated from Retin-A Micro[®] (tretinoin) gel, 0.1%, and to evaluate the influence of physiochemical differences among microspheres on tretinoin release via in vitro release test (IVRT).

METHODS

Tretinoin-loaded microspheres were prepared by mixing tretinoin and Microsponge[®] 5640 in acetone followed by evaporating the solvent to achieve tretinoin concentrations at 0.5%, 1% and 2% w/w, respectively in the microspheres. The drug-loaded microspheres were characterized for particle size distribution and surface morphology by comparing them to the blank Microsponge[®] 5640, and the microspheres that were in (and separated from) Retin-A Micro[®] gel, 0.1% (Valeant Pharmaceuticals North America LLC., NJ) The particle size distribution was assessed using laser diffraction analysis. Surface morphology of microspheres was visualized by optical and scanning electron microscopy (SEM). Drug distribution in the internal space of the microparticles were evaluated by Raman mapping coupled with chemometric analysis. Drug release (IVRT) from the in-house drug-loaded microspheres 0.5%, 1% and 2% w/w, the separated microspheres, and Retin-A Micro[®] gel, 0.1% was studied using Vison[®] Microette[™] Hanson vertical diffusion cells for 12 hours.

.Hamad@fda.hhs.gov
RESULTS
Morphology Blank microspheres
B Retin-A* gel
Fig I . Polarized light optical at 200X magnification o microspheres (A), and micro separated from Retin-A Mi (B).
 Both in-house drug be of spherical shap The surface of the of No pores could be of Optical imaging of 2
D Particle size
Particle size (Jum)
mic
Fig IV . Volume-weighted me microspheres from Retin-A p < .001, and **** p < .0001
 The average partic After loading with the microspheres
Tretinoin Rec
100 90 A 80 70 60 50 40 30 20 10
0
 Fig V. Drug recovery after 1%, and 2% w/w drug-load group. Standard deviation 99% and 94% of tree Retin-A Micro[®] gel Only 0.8% of tretino Tretinoin was mostly Over 91% of tretino

Ghaled Hamad^{1,2}, Mengmeng Niu², Priyanka Ghosh², Tannaz Ramezanli², Sam G. Raney²,

• Over 91% of tretinoin was loaded into the microspheres for concentrations at 0.5%, 1%, and 2% w/w.

nbrane selection							
	Table 1: Basic	properties of the tested synth	etic membranes				
	Membrane	Composition	Thickness (μM)	Pore size (µM)			
	Tuffryn	Hydrophilic polysulfone	145	0.45			
	Nylon	Hydrophilic nylon	170	0.45			
	Durapore	Hydrophilic polyvinylidene fluoride	125	0.45			
	Nuclepore	Track-etched polycarbonate	50	0.20			
2	sion rate	of tretinoin throug	gh the tested	I membrane	es		
2 2 1	25	of tretinoin throug		Nucleopore R ² : Durapore R ² : Tyffrin R ² :			

 $(21.2 \ \mu g/cm^2/h^{0.5}) > Tuffryn (18.1 \ \mu g/cm^2/h^{0.5}) > Nucleopore (11.6 \ \mu g/cm^2/h^{0.5}) > Nylon (11.0)$ µg/cm²/h^{0.5}).

Table 2: Percent recoveries of tretinoin after incubation of tretinoin solutions of 21µg/mL and 0.1µg/mL concentrations with various synthetic membranes.

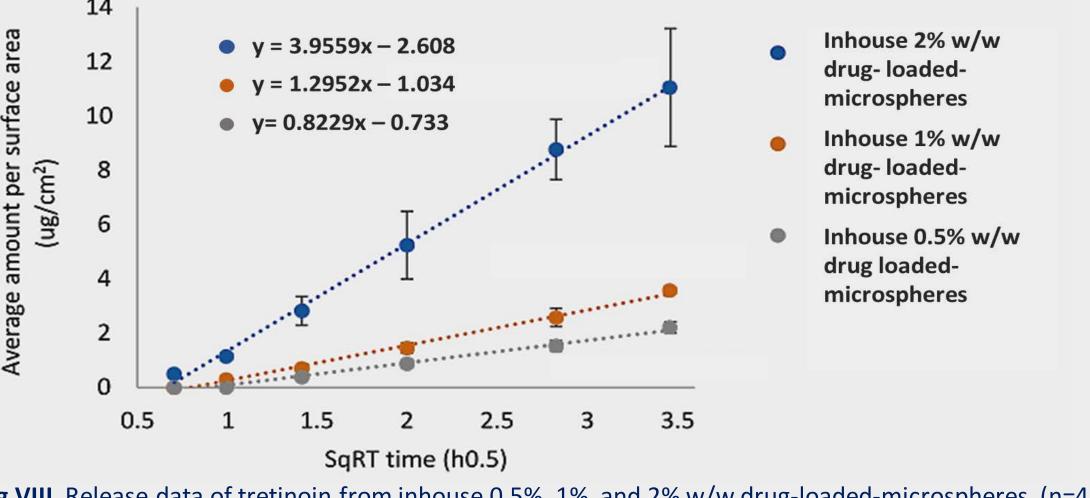
Membrane	Theoretical concentration [µg.mL ⁻¹]	Measured concentration [µg.mL ⁻¹]	Recovery [%]
Whatman OE66 Cellulose	0.130	0.131	101
acetate	23.640	22.322	94
Millinero Elucronero	0.130	0.133	102
Millipore Fluoropore	23.640	22.566	95
	0.130	0.134	103
Millipore Durapore	23.640	22.737	96
Whatman Nuclepore	0.130	0.139	107
Track- Etch	23.640	22.665	96

Table 3: Transport parameters of tretinoin across various synthetic membranes

Membrane	Transported amount after 3 h [μg·cm ⁻²]			
	Mean	RSD [%]		
Vhatman OE66 Cellulose acetate	29.61	2.97		
Millipore Fluoropore	27.80	5.86		
Millipore Durapore	29.71	7.18		
Vhatman Nuclepore Track- Etch	30.59	3.55		

• Nucleopore membrane showed the highest percent of recovery and lowest affinity to bind with tretinoin when compared to the other tested membranes.

Therefore, the IVRT experiments for Retin-A Micro[®] gel and microspheres were performed with Nucleopore membrane.



ADVANCING PHARMACEUTICAL SCIENCES, CAREERS, AND COMMUNITY

Fig VII. Release data of tretinoin from Retin-A Micro[®] gel, separated microspheres from Retin-A Micro[®] gel, and the inhouse 1% w/w drug-loaded-microspheres (n=4).

Tretinoin release from in-house microspheres was faster than that from the separated microspheres (p < 0.0001).

Fig VIII. Release data of tretinoin from inhouse 0.5%, 1%, and 2% w/w drug-loaded-microspheres (n=4).

Increasing tretinoin loading in the microspheres led to a significant (p<0.05) increase in</p> the rates and amounts of tretinoin release.

CONCLUSION

The IVRT method was found to be sensitive to the differences in tretinoin release rates.

- The drug release rates were influenced by the particle size and drug loading of the microspheres
- Particle size, specific surface area, pore structure, and extent of drug loading of the microspheres may be critical physicochemical characteristics of tretinoin topical products containing microspheres.
- Tretinoin release from microspheres may be influenced by these critical physicochemical characteristics.

ACKNOWLEDGEMENT & DISCLAIMER

This project was supported in part by an appointment (Ghaled Hamad) to the Research Participation Program at the FDA Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and FDA. The views expressed in this poster do not reflect the official policies of the U.S. Food and Drug Administration or the U.S. Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

FDA U.S. FOOD & DRUG ADMINISTRATION