OPTIMAL STUDY DESIGN TO EVALUATE THE CLINICAL RESPONSE OF EXTENDED RELEASE FORMULATIONS OF METHYLPHENIDATE (MPH) IN A PEDIATRIC POPULATION

R. Gomeni¹, F. Bressolle¹, T. J. Spencer², S. V. Faraone³ ¹*Pharmacometrica, Longcol, La Fouillade, France* ²Massachusetts General Hospital, Boston, MA, ³SUNY Upstate Medical University, Syracuse, NY

Background

Methylphenidate is a central nervous system stimulant used to treat children over 6 years old, adolescents, and adults with attention-deficit hyperactivity disorders (ADHD).

The aim of this work was to determine the optimal trial design for characterizing the PK profile and the clinical response (SKAMP scores) using extended-release formulations of MPH.

Methods

- Use the MPH PK model previously developed associated with Concerta[®] at the dose of 54 mg.
- Use the PK/PD model previously developed and accounting for multi-phase MPH release, placebo response and acute tolerance as prior information for determining the optimal design in a pediatric study.
- Determine the minimal number of PK samples and the minimal number of clinical measurements (SKAMP scores) appropriate for characterizing the response by limiting the observational time to 12 hours post-dose in a clinical trial including up to 20 subjects.
- •Estimate the sample size appropriate for estimating the model parameters with a good precision estimated by the Relative Standard Error of the estimated parameters (RSE≤20%)

The design features were estimated using the PopED software [1]

The PK model

The multi-phase release profile of MPH products in vivo and in vitro were modeled using a double Weibull function r(t):

$r(t) = ff \cdot e^{-\left(\left(\frac{time}{td}\right)^{ss}\right)} + (1 - ff) \cdot e^{-\left(\left(\frac{ti}{t}\right)^{ss}\right)}$	<u>me</u>) d1)
$f(t) = \frac{dr}{dt}$	ff =
dA1	td =
$\frac{dt}{dt} = -A1 * f(t)$	td1:
$\frac{dHZ}{dt} = A1 * f(t) - Kel \cdot A2$	ss=
Cp = A2/V	ss1:

Optimizing the

- fraction of the dose released in the 1st process time to absorb 63.2% of the dose released in the 1st process = time to absorb 63.2% of the dose released in the 2nd process
- sigmoidicy factor for the 1st process
- = sigmoidicity factor for the 2nd process

PK sampling times		
Parameters	Values	RSE
Kel (hr-1)	0.18	1.70%
V (L)	1520	4.00%
SS	3.18	2.90%
ss1	6.33	1.50%
td (hr)	0.759	5.60%
td1 (hr)	3.4	2.80%
ff (%)	0.189	5.00%

Estimated PK parameter values for Concerta ®

The reference study design [2] was based on 20 subjects with 15 PK sampling times to characterize the Concerta[®] at 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 14, 17, 20, 24 hours post-dose

Reference design. Concerta® 54 mg: Mean PK profile with the 90% prediction interval. The dots represent the PK samples used.

The optimized design was based on 20 subjects with 7 sampling times collected at 0.2, 0.5, 1.2, 2.5, 3.5, 5, 12 hours post-dose

Optimal design. Concerta[®] 54 mg: Mean PK profile with the 90% prediction interval. The dots represent the PK samples used.

The PK/PD model $SKAMP(t) = R(t) + Delta - \frac{Emax \cdot C_p}{EC_{50}(t) + C_p}$ **R(t)** is the placebo response defined by: $\frac{dR}{dt} = k_{in} \cdot \left(1 + p(t)\right) - k_{out}R$ $p(t) = AA \cdot (e^{-t \cdot P1} - e^{-t \cdot P2})$ $EC_{50}(t) = EC_{50b}(1 + \frac{t^{ga}}{t^{50ga} + t^{ga}})$

Precision of the parameter estimates in the optimal design with **15** samples

Parameters	RSE
Kel (hr-1)	3.97%
V (L)	4.74%
SS	4.31%
ss1	15.78%
td (hr)	4.40%
td1 (hr)	4.39%
ff (%)	7.22%

estimates in the parameter estimates in the optimal design with 7 samples		
Parameters	RSE	
Kel (hr-1)	6.11%	
V (L)	5.96%	
SS	4.12%	
ss1	10.97%	
td (hr)	4.71%	
td1 (hr)	4.42%	

7.92%

ff (%)

Optimize the SKAMP scores measurements

Placeb

Parameters	Values	RSE
Bas	11.1	1.70%
Kout	0.168	1.70%
P1	0.211	9.20%
P2	6.47	173.10%
AA	2.12	3.00%

SKAMP scores: estimated parameter values for placebo response

For the purpose of the present evaluation, the SKAMP scores resulting from the Concerta[®] 54 mg were considered only function of the Emax and EC₅₀ (maximal model-predicted concentration of the time-varying EC_{50} value).

The reference study design was based on 20 subjects with 8 sampling times to characterize the SKAMP scores at 0, 0.5, 1, 2, 4, 7, 10, and 12 hours post-dose

The optimized design was based on 20 subjects with 6 sampling times collected at 0, 0.4, 1, 3, 4.5, and 12 hours post-dose

Conclusions: The optimal design approach provides a quantitative criteria for implementing clinical trials in a pediatric population by minimizing the number of samples required to properly characterize either the complex PK profiles of the extended release formulations of MPH or the clinical response evaluated by the SKAMP clinical scores.

References:

Estimated parameters of the PK/PD model **MPH**

Parameters	Values	RSE
Emax	0.643	1.70%
EC50	0.725	32.60%
t50	2.05	33.80%
ga	8.59	20.40%
Delta	1.64	38.50%

SKAMP scores: estimated parameter values for the Concerta[®] 54 mg response

> SKAMP scores: precision of the parameter estimates in the reference design with 8 samples Parameters RSE 4.71% Emax

> > 20.94%

Reference design. SKAMP scores expected for Concerta® 54 mg: Mean SKAMP profile with the 90% prediction interval. The dots represent the SKAMP samples.

EC50

SKAMP scores: precision of the parameter estimates in the optimal design with 6 samples

Parameters	RSE
Emax	4.55%
EC50	19.79%

Optimal design. SKAMP scores expected for Concerta® 54 mg: Mean SKAMP profile with the 90% prediction interval. The dots represent the SKAMP samples.