Effect of Polymer Crosslinking on Release Mechanisms from Long-acting Intrauterine Systems

Suraj Fanse¹, Quanying Bao¹, Yuan Zou², Yan Wang², and Diane J. Burgess¹

¹University of Connecticut, School of Pharmacy, Storrs, CT, USA

²Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration,

Silver Spring, MD, USA

Polymer crystallinity decreases at high crosslinking density

> Controlling the degree of crosslinking of LNG-IUSs can be used to tune the drug release kinetics of these long-acting formulations.

CONCLUSIONS

- > Drug release from LNG-IUSs was influenced by polymer crystallinity, porosity-controlled swelling, hydrophobicity, and the the diffusion barrier created by the polymer matrix.
- > The current study provides enhanced understanding of drug release from LNG-IUSs and will facilitate the development of their generic equivalents.

ACKNOWLEDGEMENTS

Funding for this project was made possible by the U.S. Food and Drug Administration (FDA) through Grant # 1U01FD005443-01. This poster reflects the views of the authors and should not be construed to represent FDA's views or policies.

REFERENCES

1. Fanse S., et al. Int. J. Pharm., 2022. 2. Fanse S., et al. Int. J. Pharm., 2021.

