Understanding Drug Distribution and Release in Ophthalmic Emulsions

M0930-06-36

Celia N. Cruz¹ and Xiaoming Xu¹

1. Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA 2. Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA

CONTACT INFORMATION: xiaoming.xu@fda.hhs.gov

PURPOSE

Establishing bioequivalence (BE) of ophthalmic emulsions in the absence of in vivo data can be challenging. The objective of this study is to understand the underlying mechanism and process of drug distribution and release (Figure 1A) in the context of formulation and (release) environment-associated variables that are important for BE assessment.

Caqueous

Figure 1. A) The phase composition and complex drug diffusion in the microenvironment of an emulsion formulation; B) The simplified scenario of phase composition and drug diffusion in an emulsion formulation.

METHODS

A novel kinetic method for determining drug partitioning (Figure 2) was used to quantitatively evaluate the rate and extent of drug distribution within a simplified biphasic emulsion system (Figure 1B).

Figure 2. Theoretical basis of the kinetic method to determining partition coefficient.

The experimental setup consisted of a dissolution work station providing agitation control, in-situ UV fiber optics for real time concentration analysis and a circulating water bath for temperature control (Figure 3). Cyclosporine (CyA) and difluprednate (DFP) were used as the model drugs. The formulation-variables included the amount of polysorbate 80, glycerin, and carbomer copolymer as well as the oil-aqueous interfacial area. The investigated (release) environmentassociated variables were concentrations of sodium dodecyl sulfate (SDS) and ethanol, ionic strength, temperature, and agitation rate.

Figure 3. A) The experimental setup for evaluating the effects of formulation- and environmentassociated variables, including the fiber optic dissolution work station and 25 mL mini vessels. B) The experimental setup for evaluating the effect of interfacial area, consisting of 1000 mL jacketed beakers and in-house fabricated interfacial area controller with switchable bottom inserts.

Yixuan Dong¹, Leanna Hengst¹, Robert Hunt¹, Deval Patel¹, Anh Vo¹, Stephanie Choi², Muhammad Ashraf¹,

RESULTS

Table 1. Apparent partition coefficient values of CyA and DFP with respect to
 polysorbate 80 concentration determined by kinetic method and equilibrium concentration method (mean \pm sd, n=3).

			Log P _{app}
Drug	Concentration of Polysorbate 80 (%, w/w)	Kinetic method = log (k_{21}/k_{12})	Equilibrium concentration method = log ([C _{oil}] _{eq} /[C _{aq}] _{eq})
	0	4.764 ± 0.109	4.533 ± 0.367
	0.005	4.723 ± 0.083	4.607 ± 0.108
СуА	0.01	4.669 ± 0.043	4.551 ± 0.194
	0.1	$4.047 \pm 0.231^{\#}$	4.115 ± 0.120
	1.0	$3.299 \pm 0.078^{\#}$	3.204 ± 0.042
	0	3.542 ± 0.084	3.504 ± 0.066
	0.004	3.471 ± 0.028	3.425 ± 0.008
	0.01	3.405 ± 0.052	3.350 ± 0.070
	0.025	3.304 ± 0.050	n/d
DFP	0.04	3.098 ± 0.071	3.174 ± 0.009
	0.1	2.957 ± 0.096	2.893 ± 0.020
	0.25	2.662 ± 0.030	n/d
	0.4	2.413 ± 0.062	2.476 ± 0.097
	4.0	n/d	1.885 ± 0.076

n/d: Not determined. #: Aqueous concentrations were analyzed by HPLC or UPLC after sampling.

Table 2. Apparent partition coefficient values of CyA and DFP with respect to changes in several formulation variables as determined by the kinetic method (mean \pm sd, n=3).

Drug	Formulation variable	Tested condition	Log P _{app}
		0%	4.669 ± 0.043
	Cheorin (w/w)	0.2%	4.691 ± 0.133
	Glycerin (w/w)	1.0%	4.881 ± 0.269
		2.0%	5.006 ± 0.164
		0%	4.764 ± 0.109
	Carbomar (w/w)	0.005%	4.354 ± 0.111
СуА		0.05%	3.898 ± 0.258
		0.005% in 0.1% polysorbate 80	4.287 ± 0.170
		0.006	4.414 ± 0.265
	Interfacial area to	0.020	4.774 ± 0.330
	ratio (cm ² /ml)	0.065	4.658 ± 0.207
		0.207	4.764 ± 0.180
		0%	3.205 ± 0.042
	Cheorin (w/w)	0.2%	3.137 ± 0.072
	Giycenin (w/w)	1.0%	3.145 ± 0.076
		2.0%	3.236 ± 0.057
DFF		0.006	2.904 ± 0.392
	Interfacial area to	0.020	3.246 ± 0.310
	ratio (cm ² /ml)	0.065	3.137 ± 0.212
		0.207	3.216 ± 0.131

Figure 4. Biphasic diffusion rate constants determined by the kinetic method with respect to the concentrations of polysorbate 80. A) CyA; B) DFP. (mean \pm sd, n=3).

Table 3. Apparent partition coefficient values of CyA and DFP with respect to changes in several environment variables as determined by the kinetic method (mean \pm sd, n=3).

Drug	Environment variable	Tested condition	Log P _{app}
		0%	4.764 ± 0.109
		0.25%	1.704 ± 0.188
	SDS (w/w)	0.50%	0.417 ± 0.315
		1.00%	0.476 ± 0.309
		0.50% in 0.01% polysorbate 80	0.943 ± 0.268
	Ethanol in polysorbate	0%	4.669 ± 0.043
		10%	4.488
СуА	80 (0.01%, w/w)	20%	3.913 ± 0.128
·		25%	3.268 ± 0.262
	lonic strength in polysorbate 80 (0.01%, w/w)	0	4.669 ± 0.043
		0.141	4.801 ± 0.111
		0.3	4.923 ± 0.151
	Temperature	25°C	4.498 ± 0.088
	in polysorbate 80	34°C	4.669 ± 0.043
	(0.01%, w/w)	43°C	N/A
	SDS (w/w)	0%	3.542 ± 0.084
		0.25%	2.385 ± 0.097
		0.50%	1.389 ± 0.152
		1.00%	0.936 ± 0.160
		0.50% in 0.04%vpolysorbate 80	1.442 ± 0.198
	Ethanol in polysorbate 80 (0.04%, w/w)	0%	3.098±0.071
CyA - DFP		10%	2.854 ± 0.049
		20%	2.490 ± 0.131
		30%	1.904 ± 0.314
DFP	Ionic strength	0	3.210 ± 0.286
	in polysorbate 80	0.141	3.317 ± 0.097
	(0.01%, w/w)	0.3	3.215 ± 0.171
	Temperature in polysorbate 80 (0.04%, w/w)	25°C	3.204 ± 0.108
		34°C	3.205 ± 0.042
		43°C	3.160 ± 0.046
		0	2.844 ± 0.668
	Agitation in polysorbate	50	3.300 ± 0.188
	80 (0.04%, w/w)	125	3.196 ± 0.083
		200	3.186 ± 0.065

Environment variable	Tested condition	Log P _{app}
	0%	4.764 ± 0.109
	0.25%	1.704 ± 0.188
SDS (w/w)	0.50%	0.417 ± 0.315
	1.00%	0.476 ± 0.309
	0.50% in 0.01% polysorbate 80	0.943 ± 0.268
	0%	4.669 ± 0.043
Ethanol in polysorbate	10%	4.488
80 (0.01%, w/w)	20%	3.913 ± 0.128
	25%	3.268 ± 0.262
Ionic strength	0	4.669 ± 0.043
in polysorbate 80	0.141	4.801 ± 0.111
(0.01%, w/w)	0.3	4.923 ± 0.151
Temperature	25°C	4.498 ± 0.088
in polysorbate 80	34°C	4.669 ± 0.043
(0.01%, w/w)	43°C	N/A
	0%	3.542 ± 0.084
	0.25%	2.385 ± 0.097
SDS (w/w)	0.50%	1.389 ± 0.152
	1.00%	0.936 ± 0.160
	0.50% in 0.04%vpolysorbate 80	1.442 ± 0.198
	0%	3.098±0.071
Ethanol in polysorbate	10%	2.854 ± 0.049
80 (0.04%, w/w)	20%	2.490 ± 0.131
	30%	1.904 ± 0.314
lonic strength	0	3.210 ± 0.286
in polysorbate 80	0.141	3.317 ± 0.097
(0.01%, w/w)	0.01%, w/w) 0.3 3.2	3.215 ± 0.171
Temperature	25°C	3.204 ± 0.108
in polysorbate 80	34°C	3.205 ± 0.042
(0.04%, w/w)	43°C	3.160 ± 0.046
	0	2.844 ± 0.668
Agitation in polysorbate	50	3.300 ± 0.188
80 (0.04%, w/w)	125	3.196 ± 0.083
	200	3.186 ± 0.065

Advancing Pharmaceutical Sciences,

Figure 5. Biphasic diffusion rate constants of CyA with espect to the concentrations of carbomer (* The experiment was performed at 400 rpm due to he high viscosity of arbomer solution) nean \pm sd, n=3).

Figure 6. Biphasic diffusion rate constants with respect to the interfacial area. A) CyA; B) DFP. (mean \pm sd, n=3).

Interfacial area to aqueous volume ratio (cm²/mL)

Figure 9. Biphasic diffusion rate constants with respect to the concentrations of SDS. A) CyA; B) DFP. (mean \pm sd, n=3).

CONCLUSIONS

The formulation- and environ associated variables impacte distribution and release in big emulsion systems.

This study provided insight in distribution and diffusion in co ophthalmic emulsions. It could tool to assist with formulation well as development of in vitr determine the product samen support BE assessment of op emulsions.

ACKNOWLEDGEMENTS

YD, DP, and AV acknowledge support of fellowship from the Oak Ridge Institute for Science and Education, administered through an interagency agreement between the U.S. Department of Energy and Food and Drug Administration.

REFERENCES

[1] Y. Dong, et al. Journal of Pharmaceutical Sciences, 2019, 108(6), 2002-2011. [2] Y. Dong, et al. Journal of Controlled Release, 2019. https://doi.org/10.1016/j.jconrel.2019.09.010

Figure 10. Biphasic diffusion rate constants as a function of temperature. A) CyA; B) DFP. $(mean \pm sd, n=3).$

Figure 8. Biphasic diffusion rate constants with respect to the concentrations of ethanol. A) CyA; B) DFP. (mean \pm sd, n=3).

Figure 11. Biphasic diffusion rate constants of DFP with respect to the stirring rate. (mean \pm sd, n=3).

	Factor change		Rate (to aq.)	Extent (to aq.)
ment- d the drug hasic	Formulation- associated variables	Surfactant (e.g., Polysorbate 80) conc. 🕇	***	
		Carbomer conc. 1	СуА 🕇	СуА 🕇
		Glycerin conc. (viscosity)	CyA 🖊 DFP 💳	CyA 🦊 DFP 🚃
to the drug omplex d serve as a design as o methods to ess to ohthalmic		Total surface area (i.e., globule size) 1	* *	(Underestimating due to curvature effect)
	Environment- associated variables	SDS conc.	***	***
		Ethanol conc. 1	**	
		Ionic strength	CyA 🖊 DFP 🚃	CyA 🦊 DFP 🚃
		Temperature	CyA 📕 DFP 🕇	CyA 🦊 DFP 🚃
		Stirring rate	DFP 🕇	DFP 🚃

DISCLAIMER

This poster reflects the views of the authors and should not be construed to represent FDA's views or policies.

FDA U.S. FOOD & DRUG ADMINISTRATION