508361

UCONN

Development of In Vitro-In Vivo Correlation of Peptide Microspheres – **Possibility and Challenges**

J. Andhariya¹, R. Jog¹, J. Shen¹ Y. Zou², Y. Wang², S. Choi², and D.J. Burgess¹ 1-University of Connecticut, School of Pharmacy, Storrs, CT 06269 2- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993

PURPOSE

In vitro-in vivo correlation (IVIVC):

• In vitro response

IVIVC Predictive mathematical model

- Challenging for the microspheres complex release characteristics
- However, developed Level A IVIVC (rabbit model) -

Peptide Microspheres -

- Further explore the concept of IVIVC development
- **Challenges:** Larger size, hydrophilic, high burst release –Variable

OBJECTIVE: To understand challenges involved and possibility of establishing level A IVIVCs (rabbit model) for peptide microsphere drug products.

METHOD(S)

Model Drug: Leuprolide Acetate

Preparation Method:

Single emulsion (O/W) solvent evaporation

Formulations	Solvent systems	Homogenization Speed (RPM)	
F1	DCM/MeOH	13 to 14 K	
F2		8 to 9 k	
F3	DCM/DMSO	13 to 14 K	euprolide acetate
F5		8 to 9 k	

Characterization of microspheres:

1. Critical quality attributes: Drug loading, particle size, porosity

2. In Vitro Release Testing:

- Sample-and-separate method
- Medium: 33 mM phosphate buffer, pH 7.4
- Testing Temperature: 37°C

3. In Vivo Release Testing:

- Model: Rabbit
- Route: IM injection
- Blood Sample collection over the period of time

4. In vitro-in vivo correlation (IVIVC):

- 2- Stage deconvolution Approach (Loo-Riegelman method)
- Validation of the model: Internal as well as external
- Estimation of <u>% Prediction Error (%PE)</u>

CONTACT INFORMATION: janki.andhariya@uconn.edu

RESULT(S)

Formulations	Drug Loading (%W/W)	Particle Size (µm)	Porosity (%)
F1	~ 8 %	45.52	57.06
F2		72.69	52.65
F3	Q1/Q2	40.71	61.01
F5		52.27	56.48

CONCLUSION(S)

- \checkmark The size, porosity and release characteristics of LA microspheres appeared to be sensitive to manufacturing changes.
- ✓ Despite the differences in the *in vitro* and *in vivo* release profiles (% burst) release and release rate), an affirmative level A IVIVC was developed using the developed in vitro release testing method in a rabbit model for peptide microspheres.
- ✓ This indicates that the developed *in vitro* release testing method has the potential to predict the *in vivo* performance of microspheres.

FUNDING

- FDA (Grant Award 1U01FD004931-02).
- represent FDA'S views or policies.

REFERENCES.1. Andhariya J. V., Shen J. and Burgess D. J. et.al., Journal of Controlled Release, 2017, 255, 27-35. 2.Shen J. and Burgess D. J. et.al., Journal of Controlled Release, 2015, 218, 2-12. 3.. FDA Guidance for Industry: extended release oral dosage forms: development, evaluation and application of in vitro/in vivo correlation, Rockville, MD, 1997.

Support was provided by the Office of Generic Drugs/Office of Research Standards, U.S.

• **Disclaimer**: This poster reflects the views of the authors and should not be construed to