Evaluation of effect of minor manufacturing changes and establishment of IVIVC for compositionally equivalent parenteral microsphere drug products

J. V. Andhariya¹, R. Jog¹, J. Shen¹, Y. Zou², S. Choi², Y. Wang², D. J. Burgess¹

1-University of Connecticut, School of Pharmacy, Storrs, CT 06269

B27

2- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD 20993 Janki.andhariya@uconn.edu; d.burgess@uconn.edu

OBJECTIVES

* PLGA microspheres - complex processing methodologies and hence, minor manufacturing changes have the potential to affect microsphere physicochemical characteristics. * Moreover, establishment of in vitro-in vivo correlation (IVIVCs) for parenteral polymeric microspheres has been very challenging, due to their complex multiphase release characteristics as well as the lack of compendial *in vitro* release testing methods.

The objectives of present study were: 1) To investigate the effect of minor changes in the manufacturing process on the physicochemical properties of various compositionally equivalent parenteral PLGA microsphere drug products; 2) to develop in vitro release testing methods to ensure product quality and predict in vivo performance; and 3) to establish Level A in vitro-in vivo correlations (IVIVCs) for the compositionally equivalent PLGA microspheres.

METHODS

1. Preparation of Q1/Q2 Equivalent Microspheres with Manufacturing Differences:

Table 1. Naltrexone Microspheres¹

Preparation Method Solvent System Sample

Table 2. Risperidone Microspheres²

Preparation Method Solvent System

Table 3. Leuprolide Acetate Microspheres

Sample	Solvent System	Homo. Speed (RPM)
Earmulation E1		

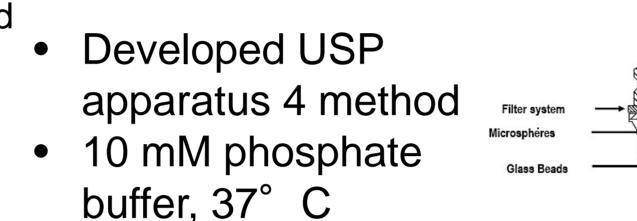
Formulation 1	Magnetic Stirring	DCM/BA		
Formulation 2	Magnetic Stirring			
Formulation 3	Homogenization	EA/BA		

DCM: Methylene Chloride, EA: Ethyl Acetate, BA: Benzyl Alcohol

Single Emulsion Solvent Evaporation method

Primary Q/W Transfer to large Solidify, Drug+Polymer Aqueous phase Emulsion using Collect and +Organic PVA+Water (DP) (CP) Solvent Dry

2. Evaluation of Critical Quality Attributes (CQAs):


CQA	Method of Determination
Drug loading (DL)	High performance liquid chromatography
Particle size	Accusizer auto dilution particle sizing system
Porosity	Mercury porosimetry

Formulation 1	Homogenization	DCM_Dry Sieving		
Formulation 2		DCM_Wet Sieving		
Formulation 3	Vortexing			
Formulation 4	Homogenization	EA/BA		

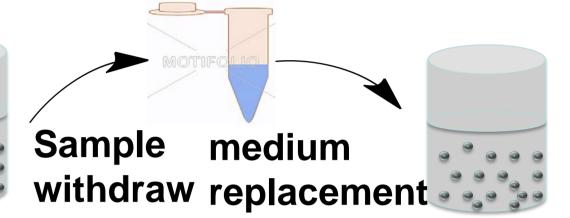
Risperidone and Naltrexone Microspheres

3. In Vitro Release Testing:

Sample

4. In Vivo Release Testing:

- Model: Rabbit
- Route: IM injection
- Blood Sample collection

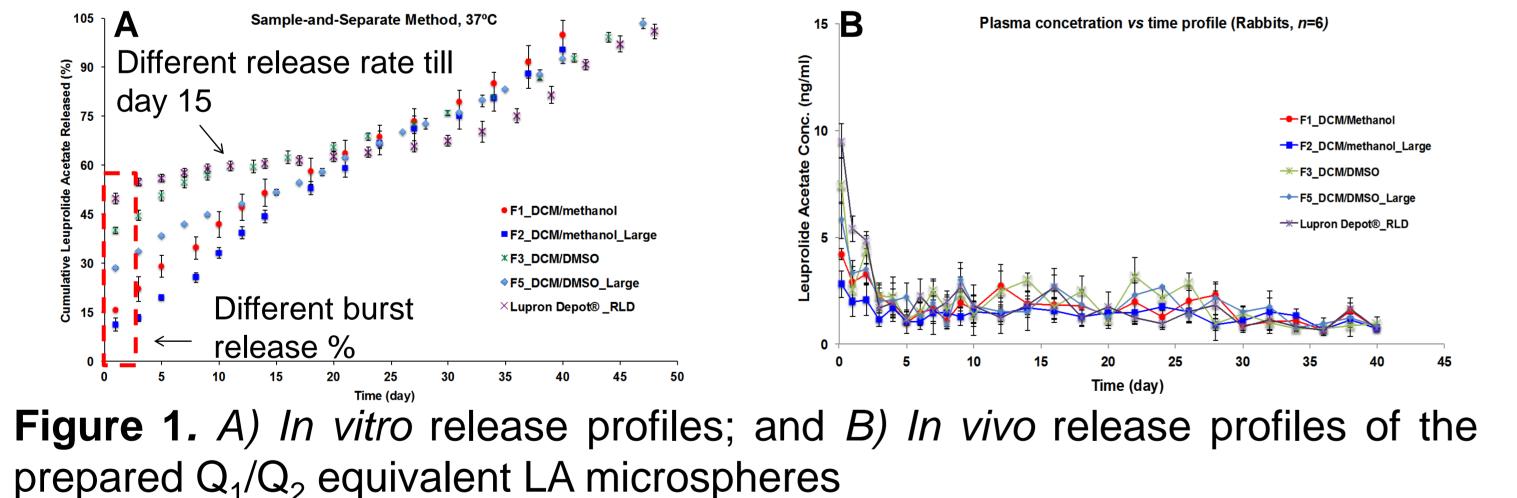

MeOH: Methanol, DMSO: Dimethyl sulfoxide

Leuprolide Acetate Microspheres

Sample-and-separate method

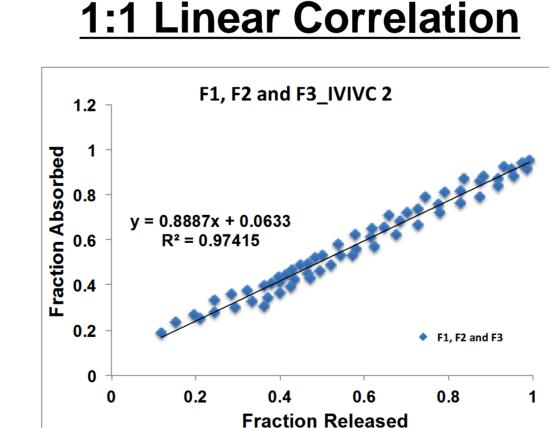
3. Development of in vitro-in vivo correlation (IVIVC) for LA microspheres:

33 mM Phosphate buffer, 37°C



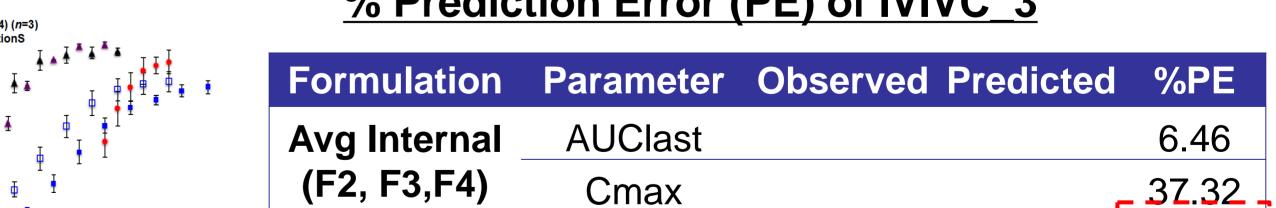
5. Development of IVIVC:

- <u>2- Stage deconvolution Approach</u> (Loo-Riegelman method)
- Validation of the model: Internal as well as external
- Estimation of % Prediction Error (%PE)


	RESULTS											
1. Phys	sicochem	ical Prop	erties:		Naltrexone Micros Q1/Q2 – 30% DL	pheres ¹		speridone Microsp 1/Q2 – 35% DL	heres ²	•	orolide Acetate Mic Q1/Q2 – 8% DL	rospheres
	Manufactu	ring Differe	nces	Formulation		% Porosity	Formulation	Particle Size (µm) (Mean±SD)	% Porosity	Formulation	Particle Size (µm) (Mean±SD)	% Porosity
Drug Loading	Particle Size	Porosity	In Vitro Release Characteristics	Formulation 1 Formulation 2 Formulation 3 Vivitrol®	121.11±3.61 105.49±8.63	49.83 58.32 65.08 50.21	Formulation 1 Formulation 2 Formulation 3 Formulation 4 Risperdal Consta [®]	22.77 ± 11.71 46.05 ± 0.81 43.79 ± 1.07 34.39 ± 31.44 58.43 ± 5.21	43.97 43.19 46.04 54.98 61.75	F1 F2 F3 F4 F5	45.52 ± 1.64 72.69 ± 11.82 40.71 ± 3.80 91.36 ± 16.02 52.13 ± 6.11	57.06 52.65 61.01 56.48 62.16

2. In vitro and in vivo release testing of LA microspheres:

2. Naltrexone Microspheres


100 (%) 90	∡↓↓ ↓ ↓ ↓		<u>% Pre</u>	diction Err	r <mark>or (PE) of</mark>	IVIVC_2		105 -	37ºC, USP 4 (10 mM PBS, pH 7.4) (<i>n</i> =3) High Burst Release FormulationS	<u>% Predic</u>	tion Error (PE) of IVI	VC_3	
		∳	Formulation	Parameter	Observed	Predicted	%PE	• 00 90		Formulation	Parameter	Observed	Predicted	%PE
e 60 -		Slowest	Avg Internal	AUClast	70.89	76.50	7.04	e e 60 -		Avg Internal	AUClast			6.46
So − 05 Naltrex			(F1,F3)	Cmax	11.22	13.38	11.96	opinada 45 -		(F2, F3,F4)	Cmax			. 37.32
00 ative		 Formulation 1 Formulation 2 	Formulation 2	AUClast	69.14	62.78	10.13	- ¹ 10 - ¹ 10 - ¹	I ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Formulation 1	AUClast	206.92	231.51	10.61
		 Formulation 3 Vivitrol® 	External	Cmax	7.74	7.49	3.38	Ū 15 -	CFormulation 1 E Formulation 2 AFormulation 3	External	Cmax	27.99	26.71	-4.56
	5 10 15 20 25 Time (day)	30 35 40		AUClast	81.70	74.60	9.53	o 🚣 🛎	Formulation 4 5 10 15 20 25 30 35 40 Time (day)	Risperdal	AUClast	248.50	248.69	80.0
Figu	re 2. In vitro relea	ase profiles	Vivitrol [®] -	Cmax	6.84	7.54	-9.27	Figu	re 3. In vitro release profiles	Consta®	Cmax	38.29	41.32	7.90

% Prediction Error (PE) of IVIVC_1

Formulation	Parameter	Observed	Predicted	%PE	
Ava Internal	AUClast	66.05	64.17	10.94 <	—>10%
Avg Internal	Cmax	4.84	4.45	9.52	
F5	AUClast	74.69	72.58	-2.83	
External	Cmax	5.80	5.71	-1.52	
Lupron	AUClast	69.03	63.29	-8.31	<±10%
Depot®	Cmax	9.49	10.29	8.40	

3. Risperidone Microspheres

CONCLUSIONS

1. The critical quality attributes (e.g., particle size and porosity) and hence, drug release characteristics (such as burst release phase of peptide microspheres, and release rate) appeared to be sensitive to minor manufacturing changes for both types of microsphere drug products.

2. The developed in vitro release testing methods – Can be used as a quality control tool as well as a biorelevant method.

3. Level A IVIVC for the different microsphere drug products — shows the feasibility of achieving IVIVCs for such complex drug products in humans.

REFERENCES	ACKNOWLEDGEMENT
2017	 Support was provided by the Office of Generic Drugs/Office of Research Standards, U.S. FDA (Grant Award 1U01FD004931- 02).
2. Shen J., Burgess, J.Control Rel, 218, 2015	 Support from Sotax Corporation for instrumentation and instrument maintenance is highly appreciated. Disclaimer: This poster reflects the views of the authors and should not be construed to represent FDA'S views or policies.